Publications by authors named "Mengyuan Bai"

A lateral flow chromatography strip (LFS) is a chromatography-based biosensor with advantages of convenient portability, simple operation and rapid detection. In this study, a novel rapid detection technique of aptamer-based chromatography strip was developed and used for the first time for the residue detection of tetracycline antibiotics (TCs) in various milk samples. In this method, gold nanoparticles (AuNPs) modified by TCs specific aptamers were used as probes, and cationic polymers as capture molecules in a test line (T-line).

View Article and Find Full Text PDF

A novel dual-mode aptasensor was constructed for aminoglycoside antibiotics (AAs) detection by using a broad-spectrum aptamer as a biorecognition element, and Au-Pd@Fc functionalized by signal DNA as nanoprobes. In electrochemical mode, the target-induced cyclic amplification reaction run under the action of exonuclease-III, which increased the number of nanoprobes on the electrode surface. AAs could be quantitatively detected with LOD of 0.

View Article and Find Full Text PDF

Background: At present, Chinese children aged 3-6 years old are facing challenges such as insufficient physical activity, declining physical health, and obesity, and China has yet to issue curriculum standards or physical activity guidelines for this age group. At the same time, the present kindergarten physical activity curriculum is insufficient. To address this issue, this study focused on designing and executing a planned active play intervention program for the kindergarten setting to analyze its efficacy in enhancing children's fundamental movement skills (FMS).

View Article and Find Full Text PDF

Penicillin antibiotics (PENs) play an important role in killing pathogenic bacteria. However, the residues of various penicillin antibiotics in milk gradually accumulate in the human body with the increase of milk intake, which causes direct harm to the human body. Aptamers can be used as recognition element of sensors.

View Article and Find Full Text PDF

This paper presents a straightforward method to develop a nanoporous graphene oxide (NGO)-functionalized quartz crystal microbalance (QCM) gas sensor for the detection of trimethylamine (TMA), aiming to form a reliable monitoring mechanism strategy for low-concentration TMA that can still cause serious odor nuisance. The synthesized NGO material was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy to verify its structure and morphology. Compared with the bare and GO-based QCM sensors, the NGO-based QCM sensor exhibited ultra-high sensitivity (65.

View Article and Find Full Text PDF

Herein, a novel electrochemical aptasensor using a broad-spectrum aptamer as a biorecognition element was constructed based on a screen-printed carbon electrode (SPCE) for simultaneous detection of aminoglycoside antibiotics (AAs). The ordered mesoporous carbon (OMC) was firstly modified on 2D TiC MXene. The addition of OMC not only effectively improved the stability of the aptasensor, but also prevented the stacking of TiC sheets, which formed a good current passage for signal amplification.

View Article and Find Full Text PDF

In this work, we reported a rapid and sensitive fluorescence assay in homogenous solution for detecting organophosphorus pesticides by using tetramethylrhodamine (TAMRA)-labeled aptamer and its complementary DNA (cDNA) with extended guanine (G) bases. The hybridization of cDNA and aptamer drew TAMRA close to repeated G bases, then the fluorescence of TAMRA was quenched by G bases due to the photoinduced electron transfer (PET). Upon introducing the pesticide target, the aptamer bound to pesticide instead of cDNA because of the competition between pesticide and cDNA.

View Article and Find Full Text PDF

According to the chemiluminescence characteristics of the luminol-hydrogen peroxide (HO) system, this work designed a novel and effective electrochemiluminescence (ECL) aptasensor to detect atrazine (ATZ) rapidly. Silver nanoparticles (AgNPs) could effectively catalyze the decomposition of HO and enhance the ECL intensity of the luminol-HO system. Once ATZ was modified on the aptasensor, the ECL intensity was significantly weakened because of the specific combination between ATZ and its aptamer.

View Article and Find Full Text PDF