The emerging field of orbitronics aims to generate and control orbital angular momentum for information processing. Chiral crystals are promising orbitronic materials because they have been predicted to host monopole-like orbital textures, where the orbital angular momentum aligns isotropically with the electron's crystal momentum. However, such monopoles have not yet been directly observed in chiral crystals.
View Article and Find Full Text PDFAtherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities.
View Article and Find Full Text PDFObjectives: To propose a histological-grades-based Osseous Tumor Radiological and Interpretation and Management System (OT-RIMS) that would simplify the radiological evaluation of bone tumours, categorize key radiological features into severity levels, and inform corresponding patient management actions.
Methods: This retrospective study between January 2015 and August 2022 evaluated patients with solitary bone tumours confirmed by pathology and imaging follow-up received 2 or 3 imaging modalities of radiographs, CT, or MRI. Three radiologists independently assessed radiological features, categorized bone lesions based on OT-RIMS criteria, and reached a consensus.
Scorpion-shaped hybrid double helicenes, consisting of a [5] or [6] carbohelicene and an aza[4]helicene, have been successfully constructed by orthogonal alkyne annulations via an aryl C-I bond and amido N-H bond from polyaromatic ring-fused iodoisocoumarins. In spite of the unexpected instability upon aerobic oxidation upon ambient visible light irradiation over several days, both ultraviolet-visible absorption and photoluminescence spectra along with density functional theory calculations of these helicenes have been studied, which rely heavily on the bent polyaromatic ring-fused quinolizinone conjugate skeleton. In addition, the Stokes shifts of hybrid double helicenes are generally larger than those of the structurally similar mono-carbohelicenes.
View Article and Find Full Text PDFAn unprecedented divergent aromatization reaction of α-halobenzyl γ-butenolides has been described for the selective and concise synthesis of highly substituted benzo and higher π-extended fluorenones, and 1,3-disubstituted naphthalenes depending on the migration ability of the quaternary α-substituent. This aromatization switch from Ag-mediated planarization to ylidenebutenolides likely originates from selective protonation on the enolic double bond rather than the benzyl halides by TfOH.
View Article and Find Full Text PDFImmunodeficient murine models are usually used as the preclinical models of osteosarcoma. Such models do not effectively simulate the process of tumorigenesis and metastasis. Establishing a suitable animal model for understanding the mechanism of osteosarcoma and the clinical translation is indispensable.
View Article and Find Full Text PDFWounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties.
View Article and Find Full Text PDFOrdinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description.
View Article and Find Full Text PDFACS Biomater Sci Eng
April 2024
In the clinic, inactivation of osteosarcoma using microwave ablation would damage the periosteum, resulting in frequent postoperative complications. Therefore, the development of an artificial periosteum is crucial for postoperative healing. In this study, we prepared an artificial periosteum using silk fibroin (SF) loaded with stromal cell-derived factor-1α (SDF-1α) and calcitonin gene-related peptide (CGRP) to accelerate bone remodeling after the microwave ablation of osteosarcoma.
View Article and Find Full Text PDFThe lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2023
Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications.
View Article and Find Full Text PDFNeuropathic pain is a debilitating chronic pain condition and is refractory to the currently available treatments. Emerging evidence suggests that melatonin exerts analgesic effects in rodent models of neuropathic pain. Nevertheless, the exact underlying mechanisms of the analgesic effects of melatonin on neuropathic pain are largely unknown.
View Article and Find Full Text PDFStudy Design: Retrospective case series.
Objective: To investigate the accuracy of seven scoring systems for the prediction of survival in lung cancer patients with spinal metastases (SPM).
Summary Of Background Data: Although survival scoring systems have been developed for surgical decision-making, the reliability and validity of these models are unclear for specific cancer types.
Magnetic interactions in combination with nontrivial band structures can give rise to several exotic physical properties such as a large anomalous Hall effect, the anomalous Nernst effect, and the topological Hall effect (THE). Antiferromagnetic (AFM) materials exhibit the THE due to the presence of nontrivial spin structures. EuCuAs crystallizes in a hexagonal structure with an AFM ground state (Néel temperature ∼ 16 K).
View Article and Find Full Text PDFWeyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two.
View Article and Find Full Text PDFSpinal metastases are the most common source of morbidity in patients with cancer. Recently, microwave ablation has produced satisfactory results in the management of spinal metastases. However, there is still controversy in terms of clinical treatment, such as indication, power, time, and temperature.
View Article and Find Full Text PDFCancer therapies usually suffer from poor targeting ability and serious side effects. Photoactivatable cancer therapy has the significant advantage of a high spatiotemporal resolution, but most photoactivatable prodrugs require decoration with stoichiometric photocleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a photoactivation strategy with biogenic riboflavin as the photosensitizer to promote the in situ transformation of noncytotoxic dihydroalkaloid prodrugs dihydrochelerythrine (DHCHE), dihydrosanguinarine (DHSAN), and dihydronitidine (DHNIT) into anticancer alkaloid drugs chelerythrine (CHE), sanguinarine (SAN), and nitidine (NIT), respectively, which can efficiently kill cancer cells and inhibit in vivo tumor growth.
View Article and Find Full Text PDFRare earth elements (REEs) have been long applied in magnesium alloys, among which the mischmetal-containing WE43 alloy has already got the CE mark approval for clinical application. A considerable amount of REEs (7 wt%) is needed in that multi-phased alloy to achieve a good combination of mechanical strength and corrosion resistance. However, the high complex RE addition accompanied with multiple second phases may bring the concern of biological hazards.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Bone implants with the photothermal effect are promising for the treatment of bone tumor defects. Noble metal-based photothermal nanoagents are widely studied for their stable photothermal effect, but they are expensive and difficult to directly grow on implant surfaces. In contrast, non-noble metal photothermal nanoagents are economical but unstable.
View Article and Find Full Text PDFBand structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Γ band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb.
View Article and Find Full Text PDFMacrophages play a vital role for guiding the fate of osteogenesis- related cells. It is well known that nano-topography and bioactive ions can directly enhance osteogenic behavior. However, the effects of nano-structure combined with bioactive ions release on macrophage polarization and the following osteogenesis and angiogenesis are rarely reported.
View Article and Find Full Text PDFTumor acidic environment-activated combination therapy holds great promise to significantly decrease side effects, circumvent multiple drug resistance, and improve therapeutic outcomes for cancer treatment. Herein, Sorafenib/ZnPc(PS)@Fe-TA nanoparticles (SPFT) are designed with acid-environment turned-on fluorescence to report the activation of triple therapy including photodynamic, chemodynamic, and chemotherapy on hepatocellular carcinoma. The SPFT are composed of SP cores formulated self-assembly of sorafenib and ZnPc(PS), with high drug loading efficiency, and Fe-TA shells containing FeCl and tannic acid.
View Article and Find Full Text PDFBackground: Retinoblastoma protein (Rb) supports vasoprotective E2F Transcription Factor 1 (E2f1)/Dihydrofolate Reductase (Dhfr) pathway activity in endothelial cells. Cyclin I (Ccni) promotes Cyclin-Dependent Kinase-5 (Cdk5)-mediated Rb phosphorylation. Therefore, we hypothesized that endothelial Ccni may regulate cardiovascular homeostasis, vessel remodeling, and abdominal aortic aneurysm (AAA) formation.
View Article and Find Full Text PDF