Publications by authors named "Mengyu Tu"

Pancreatic ductal adenocarcinoma (PDAC) displays a high degree of spatial subtype heterogeneity and co-existence, linked to a diverse microenvironment and worse clinical outcome. However, the underlying mechanisms remain unclear. Here, by combining preclinical models, multi-center clinical, transcriptomic, proteomic, and patient bioimaging data, we identify an interplay between neoplastic intrinsic AP1 transcription factor dichotomy and extrinsic macrophages driving subtype co-existence and an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Objective: Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant desmoplastic stroma composed of cancer-associated fibroblasts (CAF) and interspersed immune cells. A non-canonical CD8 T-cell subpopulation producing IL-17A (Tc17) promotes autoimmunity and has been identified in tumours. Here, we evaluated the Tc17 role in PDAC.

View Article and Find Full Text PDF

Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear.

View Article and Find Full Text PDF

Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages.

View Article and Find Full Text PDF

Large-scale fluorescence calcium imaging methods have become widely adopted for studies of long-term hippocampal and cortical neuronal dynamics. Pyramidal neurons of the rodent hippocampus show spatial tuning in freely foraging or head-fixed navigation tasks. Development of efficient neural decoding methods for reconstructing the animal's position in real or virtual environments can provide a fast readout of spatial representations in closed-loop neuroscience experiments.

View Article and Find Full Text PDF

Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle.

View Article and Find Full Text PDF

The parvoviruses are widely spread in many species and are among the smallest DNA animal viruses. The parvovirus is composed of a single strand molecule of DNA wrapped into an icosahedral capsid. In a viral infection, the massy capsid participates in the entire viral infection process, which is summarized in this review.

View Article and Find Full Text PDF