Publications by authors named "Mengyu Qiu"

Background: This study evaluated the effects of nitric oxide (NO) treatment on ascorbic acid (AsA) metabolism and mung bean sprout quality. It examined changes in the AsA content, enzyme activity associated with AsA metabolism, antioxidant capacity, cell membrane composition, and cellular structure to clarify the effects of NO on mung bean sprouts.

Results: Nitric oxide treatment preserved mung bean sprout quality by enhancing significantly the activity of enzymes involved in the l-galactose pathway (including guanosine diphosphate (GDP)glutathione (-d-mannose pyrophosphorylase, GDP-mannose-3',5'-epimerase, GDP-l-galactose phosphorylase, l-galactose-1-phosphate phosphatase, l-galactose dehydrogenase, and l-galactose-1,4-lactone dehydrogenase) and the AsA-glutathione (GSH)(Beijing Solarbio Science and Technology Co.

View Article and Find Full Text PDF

Wounds in harsh environments can face long-term inflammation and persistent infection, which can slow healing. Wound spray is a product that can be rapidly applied to large and irregularly dynamic wounds, and can quickly form a protective film in situ to inhibit external environmental infection. In this study, a biodegradable A and B combined multi-functional spray hydrogel is developed with methacrylate-modified chitosan (CSMA) and ferulic acid (FA) as type A raw materials and oxidized Bletilla striata polysaccharide (OBSP) as type B raw materials.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic disease with diffuse mucosal inflammation limited to the colon. A topical drug delivery system that could be facilely performed and efficiently retained at colon are attractive for clinical ulcerative colitis treatment. Herein, a novel platform for rectal administration of thermosensitive hydrogel co-loaded with nanoparticles to treat ulcerative colitis was developed.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation, eventually leading to severe disability and premature death. At present, the treatment of RA is mainly to reduce inflammation, swelling, and pain. Commonly used drugs are non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs).

View Article and Find Full Text PDF

Bletilla striata polysaccharide (BSP) is a naturally occurring polysaccharide that demonstrates notable biocompatibility and biodegradability. Additionally, BSP possesses therapeutic attributes, including anti-inflammatory and reparative actions. Herein, we report a novel BSP hydrogel prepared using 1,4-butanediol diglycidyl ether (BDDE) as a cross-linking agent.

View Article and Find Full Text PDF

Wound-healing of drug-resistant bacterial infections has always been a clinical challenge. The design and development of effective and economically safe wound dressings with antimicrobial activity and healing-promoting properties is highly desirable, especially in the context of wound-infections. Herein, we designed a physical dual-network multifunctional hydrogel adhesive based on polysaccharide material for the treatment of full-thickness skin defects infected with multidrug-resistant bacteria.

View Article and Find Full Text PDF

In this study, a novel nanofiber material with Polylactic acid (PLA), natural plant polysaccharides-Bletilla striata polysaccharide (BSP) and Rosmarinic acid (RA) as the raw materials to facilitate wound healing was well prepared through coaxial electrospinning. The morphology of RA-BSP-PVA@PLA nanofibers was characterized through scanning electron microscopy (SEM), and the successful formation of core-shell structure was verified under confocal laser microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR). RA-BSP-PVA@PLA exhibited suitable air permeability for wound healing, as indicated by the result of the water vapor permeability (WVTR) study.

View Article and Find Full Text PDF

Due to its capabilities for wound healing, antimicrobial defense, hemostasis, and biodegradation, chitosan has seen increased use in biomedical disciplines in recent years. In the meantime, efforts have been made to develop and use insect chitosan as a source to address the seasonal, irritating, and regional shortcomings of traditional shrimp and crab chitosan. In this study, a new type of insect chitosan (DCS) was first extracted from Eupolyphaga sinensis Walker by a low-temperature intermittent method and was compared with commercially available pharmaceutical chitosan (CS).

View Article and Find Full Text PDF

N-Heterocycles can be found in natural products and drug molecules and are indispensable components in the area of organic synthesis, medicinal chemistry and materials science. The construction of these N-containing heterocycles by traditional methods usually requires the preparation of reactive intermediates. In the past decades, with the rapid growth of transition metal catalysed coupling reactions, syntheses of heterocycles from precursors with inert chemical bonds have become a challenge.

View Article and Find Full Text PDF

Although rational design-based metabolic engineering has been applied widely to obtain promising microbial biocatalysts, conventional strategies such as adaptive laboratory evolution (ALE) and mutagenesis are still efficient approaches to improve microorganisms for exceptional features such as a broad spectrum of substrate utilization, robustness of cell growth, as well as high titer, yield, and productivity of the target products. In this chapter, we describe the procedure to generate mutant strains with desired phenotypes using ALE and a new mutagenesis approach of Atmosphere and Room Temperature Plasma (ARTP). In addition, we discuss the methodology to combine next-generation sequencing (NGS)-based genome-resequencing and RNA-Seq transcriptomics approaches to characterize the mutant strains and connect the phenotypes with their corresponding genotypic changes.

View Article and Find Full Text PDF

In this study, nanoscale zero-valent iron (NZVI) was synthesized by conventional liquid-phase chemical reduction methods without a support material and then characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of NZVI particles on phosphate removal from aqueous solutions was examined. The results showed that the phosphate removal efficiency increased from 34.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvg99oiuk5m0mj27876b7e1m2i9g8hl54): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once