Publications by authors named "Mengyu Liu"

A catalyst-free reductive radical-polar crossover cyclization with alkenes and sodium dithionite to construct densely functionalized cyclic sultines was described. The key to the success of this practical protocol relies not only on a bifunctional role of sodium dithionite, that is, serving as radical initiator and SO source, but also on the diversified conversions (RPCC/SO insertion/S2 cyclization and RPCC/SO insertion/1,4-addition cyclization processes), which enabled efficient construction of target compounds with the high efficiency and atom- and step-economy under mild conditions.

View Article and Find Full Text PDF

To address the challenge of preserving fresh chestnuts, chitosan (CS), hydroxypropyl methylcellulose (HPMC), nisin (N), and sodium alginate (SA) were utilized in the preparation of a bilayer edible film named CS-HPMC-N/SA, which was compared to the monolayer films CS-HPMC and CS-HPMC-N. In comparison to the CS-HPMC film, the CS-HPMC-N and CS-HPMC-N/SA films exhibited increased water vapor permeability (WVP), oxygen permeability, and thickness, while transparency, tensile strength (TS), and elongation at break (EAB) were reduced. The bilayer film CS-HPMC-N/SA showed higher WVP, transparency, thickness, and EAB, but lower TS than the monolayer film CS-HPMC-N.

View Article and Find Full Text PDF
Article Synopsis
  • To combat plastic pollution from polyethylene film mulch in agriculture, biodegradable plastic films are being researched as an eco-friendly alternative, although their effect on soil carbon is still uncertain.
  • A field study was conducted comparing the impacts of different types of microplastics (biodegradable PBAT and traditional LDPE) on soil properties while growing soybeans, measuring factors like soil respiration and organic carbon content.
  • Results indicated that different microplastics had varying effects on soil respiration and carbon fractions; while PBAT debris enhanced soil carbon levels, LDPE reduced them, suggesting that biodegradable films could benefit soil health and carbon sequestration efforts in agriculture.
View Article and Find Full Text PDF

A crystalline@amorphous MnO (HT@RT) plasma catalyst was successfully constructed in this study to address the problem of odor pollution, especially from volatile organic sulfur compounds (VOSCs) with low olfactory thresholds. Complete conversion of dimethyl sulfide (DMS) at 140 J/L was achieved, and the ozone concentration in the exhaust gas was maintained below 5 ppm. Deeper mineralization of DMS was achieved in the HT@RT sample than in the individual HT and RT samples.

View Article and Find Full Text PDF

The novel inflammatory markers neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immunoinflammatory index (SII) have not yet been used in the study of age-related cataracts. The aim of this study was to investigate the possible relationships between the NLR, PLR, and SII and age-related cataracts. In the 2005-2008 National Health and Nutrition Examination Survey (NHANES) cross-sectional surveys, we collected complete information on blood counts, whether cataract surgery had been performed, and baseline information for adults.

View Article and Find Full Text PDF

An organocatalytic asymmetric vinylogous Michael/oxa-Michael tandem reaction between β,γ-unsaturated pyrazoleamides and isatin-derived β,γ-unsaturated ketoesters has been developed with excellent regio-, diastereo-, and enantioselectivities. The methodology provides an effective approach to construct enantiomerically pure 3,4'-pyranyl spirooxindole derivatives containing three contiguous chiral centers. Moreover, the transformations of the chiral products, including the removal and reduction of the pyrazole group, have been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed 1,127 older adults, identifying two metabolites—2-oxoglutarate and malate—that were significantly associated with increased hypertension risk, even after adjusting for other factors.
  • * The findings suggest that these metabolites could serve as potential markers for hypertension diagnosis; however, more extensive future studies are needed to validate these results.
View Article and Find Full Text PDF
Article Synopsis
  • * There are two main ways to produce D-allulose: chemical synthesis, which can create unwanted byproducts, and biosynthesis, which uses enzymes to convert starch or glycerol into D-allulose more efficiently.
  • * The article reviews recent research on biosynthesis, highlighting the enzymes used, their properties, and the potential for improved production methods for D-allulose.
View Article and Find Full Text PDF

High-fat diet (HFD) induced obesity is associated with depression-related behavioral and neurogenic changes and may lead to cognitive impairment. Fluoxetine (FXT), the most commonly used antidepressant, may alleviate depressive symptoms by increasing neurogenesis, but the potential efficacy of FXT for HFD-induced cognitive deficits is unclear. In this study, we established an obese HFD mouse model by feeding three-week-old male C57BL/6N mice with a chronic HFD for 18 weeks, then assessed adipose tissue morphology by magnetic resonance imaging and histopathology, assessed cognitive function by Morris water maze and novel object recognition tests, and detected DCX and BrdU expression in the hippocampal dentate gyrus (DG) region by immunofluorescence bioassay.

View Article and Find Full Text PDF

Soybean is an important plant source of protein worldwide. Increasing demands for soybean can be met by improving the quality of its seed protein. In this study, GmCG-1, which encodes the β-conglycinin α' subunit, was identified via combined genome-wide association study and transcriptome analysis.

View Article and Find Full Text PDF

Background: As a novel type of extracellular polysaccharide produced by Sphingomonas sp., welan gum has been widely applied in various fields because of its excellent properties. The study has improved the fermentation process.

View Article and Find Full Text PDF
Article Synopsis
  • Developing effective drug delivery systems for deep tumor penetration is crucial in cancer treatment, and using tumor-derived extracellular vesicles (EVs) is a promising approach.
  • A novel method was created to attach anti-tumor drugs to EVs using an engineered cell membrane vector that includes components for specific targeting and drug stability.
  • This strategy allows for the efficient transfer of therapeutic agents like photosensitizers deep into tumors, enhancing the effectiveness of phototherapy.
View Article and Find Full Text PDF

Females exhibit complex, dynamic behaviours during mating with variable sexual receptivity depending on hormonal status. However, how their brains encode the dynamics of mating and receptivity remains largely unknown. The ventromedial hypothalamus, ventrolateral subdivision contains oestrogen receptor type 1-positive neurons that control mating receptivity in female mice.

View Article and Find Full Text PDF

Hypothalamus is a crucial deep brain area that is responsible for the integration and coordination of various brain functions. The altered perfusion of hypothalamus during headache caused by medication-overuse headache (MOH) was previously unknown. In the current study, the altered perfusion of hypothalamic subregions in MOH patients was investigated using state-of-the-art 3D pseudo-continuous arterial spin labeling (PCASL) MR imaging.

View Article and Find Full Text PDF

Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins.

View Article and Find Full Text PDF

Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates.

View Article and Find Full Text PDF

Sheep are important herbivorous domestic animal globally, and the Chinese indigenous sheep breed has a multitude of economically significant variations due to the diverse geographical and ecological conditions. In particular, certain native breeds exhibit a visible high litter size phenotype due to the selection pressure of natural and artificial for thousands of years, offering an ideal animal model for investigating sheep's fecundity. In this study, selective signal analysis was performed on public whole-genome sequencing data from 60 sheep across eight breeds to identify candidate genes related to litter size.

View Article and Find Full Text PDF

Background: Severe fever with thrombocytopenia syndrome (SFTS) is spreading rapidly in Asia. The pathway of SFTS virus shedding from patient and specific use of personal protective equipments (PPEs) against viral transmission have rarely been reported. The study was to determine SFTS virus (SFTSV) shedding pattern from the respiratory, digestive and urinary tract to outside in patients.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI.

View Article and Find Full Text PDF

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis.

View Article and Find Full Text PDF

Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. CircABHD2 exhibits down-regulation in both endometrial cancer (EC) cells and tissues, but the biological roles and mechanisms of action in EC are still unclear. This study aims to provide a theoretical basis for the role of circABHD2 in EC and potential targets for individualized precision therapy.

View Article and Find Full Text PDF

Noninflammatory apoptosis is transformed into inflammatory pyroptosis by activating caspase-3 to lyse gasdermin E (GSDME), and this process can be used as an effective therapeutic strategy. Thus, a selective and powerful inducer of activated caspase-3 plays a vital role in pyroptosis-based cancer therapy. Herein, a human cell membrane vesicle-based nanoplatform (HCNP) is designed for photodynamic therapy (PDT).

View Article and Find Full Text PDF