In this study, pig manure rich in phosphorus was used as the recovery object, In order to realize the maximum recovery of phosphorus resources in pig manure, this study established a phosphorus recovery route combining the electrochemical method with the Vivianite method using sacrificial iron anode. And in order to obtain phosphorus rich supernatant, pig manure was treated with different pH values, and the changes in phosphorus components and metal content in the liquid phase were mainly investigated; Graded phosphorus components and microbial communities in the solid phase; Finally, the effect of electrolytic recovery of phosphorus from fermentation supernatant was studied. The results showed that the highest total phosphorus (TP) content in the liquid phase follows a trend of acidity > control > alkalinity; The analysis of the results of solid-phase phosphorus fractionation extraction shows that acidic conditions are more conducive to the release of Non-apatite inorganic phosphorus (NAIP) and Apatite inorganic phosphorus (AP); The microbial community promotes the release of phosphorus by participating in the decomposition of fermentation substrates; The analysis of the change of metal content in the liquid phase before and after electrolysis showed that the two chamber electrolytic cell can not remove other metal components while recovering the vivianite; More than 90% of the phosphorus in the supernatant after fermentation was recovered by electrolysis.
View Article and Find Full Text PDFSurfactants can reduce the surface tension of water and improve the efficiency of spray dust reduction, but the synergistic mechanism of composite surfactant solutions wetting coal dust remains unclear. In this study, sodium dodecyl sulfonate (SDDS)/sodium dodecylbenzene sulfonate (SDBS) solution and SDDS/primary alcohol ethoxylate (AEO-9) solution were prepared to wet three types of coal with different deterioration degrees. The surface tension, contact angle, and functional group composition were measured.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2019
The second polymorph of the compound 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) is reported, TPT-II, which crystallizes in space group I2/a. Its higher density and more efficient space filling indicate the lower entropy of TPT-II, while its slightly lower melting point indicates its weaker intermolecular interactions. The conditions of the crystallization experiments for TPT-I and TPT-II are the dominant factors that determine the final crystalline products.
View Article and Find Full Text PDF