Background: Tumor immunotherapy can not only eliminate the primary lesion, but also produce long-term immune memory, effectively inhibiting tumor metastasis and recurrence. However, immunotherapy also showed plenty of limitations in clinical practice. In recent years, the combination of nanomaterials and immunotherapy has brought new light for completely eliminating tumors with its fabulous anti-tumor effects and negligible side effects.
View Article and Find Full Text PDFBackground: Patients with gastric cancer have a poor prognosis. Currently, intraperitoneal chemotherapy has been considered a therapeutic option to improve prognosis due to its appealing theoretical rationales. But there is no consensus on the choice of chemotherapeutic agents used in intraperitoneal chemotherapy for gastric cancer.
View Article and Find Full Text PDFTumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen.
View Article and Find Full Text PDFAll-inorganic lead-free perovskite-derivative metal halides have shown great promise in optoelectronics, however, it remains challenging to realize efficient near-infrared (NIR) luminescence in these materials. Herein, we report a novel strategy based on Te /Ln (Ln=Er, Nd, and Yb) co-doping to achieve efficient NIR luminescence in vacancy-ordered double perovskite Cs ZrCl phosphors, which are excitable by a low-cost near-ultraviolet light-emitting diode (LED) chip. Through sensitization by the spin-orbital allowed S → P transition of Te , intense and multi-wavelength NIR luminescence originating from the 4f→4f transitions of Er , Nd , and Yb was acquired, with a quantum yield of 6.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2021
Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (HO). Also, single starvation therapy shows limited ability on resisting tumors.
View Article and Find Full Text PDFBackground: Gastric cancer presents high risk of metastasis and chemotherapy resistance. Hence, it is important to understand the mechanisms of gastric cancer distant metastasis and chemotherapeutic resistance. Our previous study has revealed Four and a Half LIM Domains 3 (FHL3) plays as a binding partner of Glycogen Synthase Kinase 3 Beta (GSK3), promoted tumor metastasis in pancreatic cancer.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells.
View Article and Find Full Text PDFSevere lung inflammation and alveolar hemorrhage can be life-threatening in systemic lupus erythematosus (SLE) patients if not treated early and aggressively. Neutrophil influx is the driver key of this pathology, but little is known regarding the molecular events regulating this recruitment. Here, we uncover a role for IL-16/mir-125a in this pathology and show not only that IL-16 is a target for miR-125a but that reduced miR-125a expression in SLE patients associates with lung involvement.
View Article and Find Full Text PDFMDSCs are a heterogeneous group of myeloid cells that suppress T cell activity in cancer and autoimmune disease. The effect of MDSCs on B cell function is not clear. Using the CIA model of autoimmune disease, we found an increase in M-MDSCs in the periphery of WT mice with CIA compared with naïve mice.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
November 2012
Introduction: Alcohol consumption, which is highly prevalent in HIV-infected individuals, poses serious concerns in terms of rate of acquisition of HIV-1 infection, HIV-1 replication, response to highly active antiretroviral therapy (HAART) and AIDS/neuroAIDS progression. However, little is known about the mechanistic pathways by which alcohol exerts these effects, especially with respect to HIV-1 replication and the patient's response to HAART.
Areas Covered: In this review, the authors discuss the effects of alcohol consumption on HIV-1 pathogenesis and its effect on HAART.
Cytochrome P450 2A6 (CYP2A6) is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS) in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown.
View Article and Find Full Text PDFBackground: Nicotine is known to generate oxidative stress through cytochrome P450 2A6 (CYP2A6)-mediated metabolism in the liver and other organs, including macrophages. This study has been designed to examine the role of CYP2A6 in nicotine metabolism and oxidative stress in SVGA cells, an immortalized human astrocyte cell line.
Methods: SVGA astrocytes were treated with 1 μM nicotine, followed by determination of mRNA and protein levels of several CYPs using quantitative RT-PCR and western blot analyses, respectively.
J Pet Environ Biotechnol
January 2012
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression.
View Article and Find Full Text PDFNicotine, the major constituent of tobacco, is predominantly metabolized by liver CYP2A6 into cotinine and many other compounds, including nicotine-derived nitrosamine ketone (NNK), which is known to cause oxidative stress. We have recently shown that CYP2A6 is highly expressed in U937 monocyte-derived macrophages. In this study we investigated the role of CYP2A6 in nicotine metabolism and oxidative stress in U937 macrophages.
View Article and Find Full Text PDFBackground: ATP-binding cassette (ABC) proteins and cytochrome P450 (CYP) enzymes regulate the bioavailability of HIV-1 antiretroviral therapeutic drugs, non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). They are also involved in regulating, and responding to, oxidative stress in various tissues and organs including liver. This study is designed to assess the effect of alcohol on the ABCC1 and CYP enzymes involved in the metabolism of NNRTIs and PIs (CYP2B6, CYP2D6, and CYP3A4) and oxidative stress (CYP1A1, CYP2A6, and CYP2E1) in U937 macrophages.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2010
Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver and metabolizes approximately 50% of the drugs, including antiretrovirals. Although CYP3A4 induction by ethanol and impact of CYP3A4 on drug metabolism and toxicity is known, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known. Therefore, we studied the effect of ethanol on binding and inhibition of CYP3A4 with a representative protease inhibitor, nelfinavir, followed by the effect of alcohol on nelfinavir metabolism.
View Article and Find Full Text PDF