Numerous chemicals have been detected in indoor environments that have potential impacts on occupant health and comfort. However, due to limited resources, it's infeasible to assess indoor exposure of each chemical for all indoor conditions through measurements alone. Hence, indoor exposure models have been developed to predict time-varied exposure for a wide range of sources and chemicals under different conditions.
View Article and Find Full Text PDFThis study examined airborne emissions from cigarette butts for styrene, 2-methyl-2-cyclopenten-1-one, naphthalene, triacetin, and nicotine. Ten experiments were conducted by placing butts in a stainless steel chamber and measuring the chemical concentrations in chamber air. Emission rates were determined from the concentrations.
View Article and Find Full Text PDFWith five trillion generated per year, cigarette butts are some of the most common litter worldwide. However, despite the potential environmental and human health risks from cigarette butts, little effort has been made to understand airborne emissions from cigarette butts. This study examined the influence of temperature, relative humidity and water saturation on airborne chemical emissions from cigarette butts.
View Article and Find Full Text PDFSmall two-component spray polyurethane foam (SPF) application kits are often applied by Do-It-Yourself (DIY) consumers. The United States Environmental Protection Agency (EPA) publishes a guideline for ventilating a space where SPF is being applied to minimize exposure to mists, vapors, particles and dust. This study sought to assess the applicability of the EPA ventilation guideline in protecting non-application areas of a house from exposure to SPF-associated emissions during a DIY application.
View Article and Find Full Text PDFIndoor Air Int Conf Indoor Air Qual Clim
July 2016
Understanding emission of Tris(2-chloro-1-methylethyl) Phosphate (TCPP) from spray polyurethane foam (SPF) insulation will contribute to the assessment of exposure to TCPP in indoor environments. This study aims to: (1) develop a method to determine the gas phase concentration of TCPP in equilibrium with the material phase (y) for open cell SPF, (2) determine the partition coefficient for TCPP between air and SPF (), and (3) examine the influence of temperature on y and . The emission of TCPP from two kinds of open cell SPF in a closed micro-chamber without flow are being tested.
View Article and Find Full Text PDFClothing can either retard or accelerate dermal exposure to phthalates. To investigate the impact of clothing on dermal exposure to six phthalates (DMP/DEP/DiBP/DnBP/BBzP/DEHP) in real environments, two sets of experiments have been conducted: (1) Skin wipes were collected from 11 adults to examine the phthalate levels on both bare-skin (hand/forehead) and clothing-covered body locations (arm/back/calf); (2) Five adults were asked to wear just-washed jeans for 1 day (1(st) experiment), 5 days (2(nd) experiment), and 10 days (3(rd) experiment). Phthalate levels on their legs were measured on selected days during the wearing period, and phthalate levels in the jeans were measured at the end of each experiment and again after washing.
View Article and Find Full Text PDFEnviron Sci Technol
July 2014
This study has determined the levels of six phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di(isobutyl) phthalate (DiBP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP)) in skin wipes; examined factors that might influence the levels, including body location, time of sampling, and hand-washing; and estimated dermal absorption based on the measured levels. Skin wipes were collected from the forehead, forearm, back-of-hand, and palm of 20 participants using gauze pads moistened with isopropanol. DiBP, DnBP, and DEHP were most frequently detected; DEHP levels were substantially higher than DnBP and DiBP levels, and DnBP levels were somewhat lower than DiBP levels.
View Article and Find Full Text PDF