Publications by authors named "Mengyan Bai"

Unlabelled: Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two () and three (). We characterized a variety of lines containing mutations on multiple and genes.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation is an energy-intensive process, to maintain the balance between growth and nitrogen fixation, high concentrations of nitrate inhibit root nodulation. However, the precise mechanism underlying the nitrate inhibition of nodulation in soybean remains elusive. In this study, CRISPR-Cas9-mediated knockout of GmNLP1 and GmNLP4 unveiled a notable nitrate-tolerant nodulation phenotype.

View Article and Find Full Text PDF

Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N fixation.

View Article and Find Full Text PDF

Pod shattering can lead to devastating yield loss of soybean and has been a negatively selected trait in soybean domestication and breeding. Nevertheless, a significant portion of soybean cultivars are still pod shattering-susceptible, limiting their regional and climatic adaptabilities. Here we performed genetic diagnosis on the shattering-susceptible trait of a national registered cultivar, Huachun6 (HC6), and found that HC6 carries the susceptible genotype of a candidate () gene, which exists in a significant portion of soybean cultivars.

View Article and Find Full Text PDF

The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, , from soybean.

View Article and Find Full Text PDF

The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome.

View Article and Find Full Text PDF

Magnesium (Mg) deficiency, a widespread yet overlooked problem in agriculture, has been reported to retard plant growth and development, through affecting key metabolic pathways. However, the metabolic responses of plant to Mg deficiency is still not fully understood. Here we report a metabolomic study to evaluate the metabolic responses to Mg deficiency in soybean leaves and roots.

View Article and Find Full Text PDF