Faithful chromosome segregation of 8 duplicated haploid genomes into 8 daughter gametes is essential for male gametogenesis and mosquito transmission of Plasmodium. Plasmodium undergoes endomitosis in this multinucleated cell division, which is highly reliant on proper spindle-kinetochore attachment. However, the mechanisms underlying the spindle-kinetochore attachment remain elusive.
View Article and Find Full Text PDFMorphogenesis of many protozoans depends on a polarized establishment of cortical cytoskeleton containing the subpellicular microtubules (SPMTs), which are apically nucleated and anchored by the apical polar ring (APR). In malaria parasite Plasmodium, APR emerges in the host-invading stages, including the ookinete for mosquito infection. So far, the fine structure and molecular components of APR as well as the underlying mechanism of APR-mediated apical positioning of SPMTs are largely unknown.
View Article and Find Full Text PDFMalaria is caused by infection of the erythrocytes by the parasites . Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The inner membrane complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony.
View Article and Find Full Text PDFMol Biochem Parasitol
January 2021
The auxin-inducible degron (AID) system is a robust chemical-genetic method for manipulating endogenous protein level by conditional proteasomal degradation via a small molecule. So far, this system has not been adapted in the P. yoelii, an important and widely used Plasmodium rodent parasite model for malaria biology.
View Article and Find Full Text PDF