Objectives: This study aimed to assess the influence of the location and distribution of short-span scans, serving as intermediate registration data, on the trueness of digitally transferring the maxillomandibular relationship in full-mouth rehabilitation.
Methods: Maxillary and mandibular complete-arch preparation casts mounted on an articulator were scanned, with and without interim restorations, using an intraoral scanner. Four types of short-span scans-right anterior, left anterior, right posterior, and left posterior-were captured from maxillary and mandibular casts.
Objectives: This study aimed to evaluate the reliability and accuracy of an intraoral ultrasound (US) device to evaluate alveolar bone by comparing it between different raters and to microCT (µCT) measurements.
Methods: 38 teeth distributed across three human cadavers were prepared by placing two notches on the facial enamel surface. The maxillary and mandibular teeth were imaged with a custom-designed intraoral 20 MHz ultrasound and µCT with 0.
Background: Teeth identification has a pivotal role in the dental curriculum and provides one of the important foundations of clinical practice. Accurately identifying teeth is a vital aspect of dental education and clinical practice, but can be challenging due to the anatomical similarities between categories. In this study, we aim to explore the possibility of using a deep learning model to classify isolated tooth by a set of photographs.
View Article and Find Full Text PDFCell division cycle 23 (CDC23) is a component of the tetratricopeptide repeat (TPR) subunit in the anaphase-promoting complex or cyclosome (APC/C) complex, which participates in the regulation of mitosis in eukaryotes. However, the regulatory model and mechanism by which the CDC23 gene regulates muscle production in pigs are largely unknown. In this study, we investigated the expression of CDC23 in pigs, and the results indicated that CDC23 is widely expressed in various tissues and organs.
View Article and Find Full Text PDFStructural variants (SVs), such as deletions (DELs) and insertions (INSs), contribute substantially to pig genetic diversity and phenotypic variation. Using a library of SVs discovered from long-read primary assemblies and short-read sequenced genomes, we map pig genomic SVs with a graph-based method for re-genotyping SVs in 402 genomes. Our results demonstrate that those SVs harboring specific trait-associated genes may greatly shape pig domestication and local adaptation.
View Article and Find Full Text PDFStatement Of Problem: Single-shade composite resins simplify the process of shade selection by providing a narrow range of color but the ability to simulate all shades. However, evidence is limited for the color shifting ability of a newly developed single‑shade composite resin.
Purpose: The purpose of this in vitro study was to evaluate the instrumental color adjustment potential (CAP-I) and visual color adjustment potential (CAP-V) of a recently introduced single-shade composite resin compared with conventional multishade composite resins against different background colors.
Long non-coding RNAs (lncRNAs) are involved in the process of muscle cell differentiation and play an important role. Previous studies have shown that lncRNA-MEG3 promotes the differentiation of porcine skeletal muscle satellite cells (PSCs), but the regulatory mechanism of MEG3 interaction with target protein has not been well studied. We demonstrated that MEG3 can bind dihydrolipoamide succinyltransferase (DLST) by RNA pull down and RIP-qPCR.
View Article and Find Full Text PDFMyogenic differentiation is a complex biological process that is regulated by multiple factors, among which long noncoding RNAs (lncRNAs) play an essential role. However, in-depth studies on the regulatory mechanisms of long noncoding RNAs (lncRNAs) in myogenic differentiation are limited. In this study, we characterized the role of the novel lncRNA , which is upregulated during porcine skeletal muscle satellite cell (PSC) differentiation in myogenesis.
View Article and Find Full Text PDFObjectives: Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.
View Article and Find Full Text PDFTarget searching and tracking photoelectric systems are widely used in civil and military fields. Achieving both efficient search and fine-observation imaging while minimizing the volume and weight of the system is the most concerning problem. In this paper, a dual-mode integrated optical system is proposed, which shares large size components between large field of view (FOV) search module and high-resolution tracking module by using the Biconic Zernike freeform mirrors.
View Article and Find Full Text PDFOvulation rate is an extremely important factor affecting litter size in sows. It differs greatly among pig breeds with different genetic backgrounds. Long non-coding RNAs (lncRNAs) can regulate follicle development, granulosa cell growth, and hormone secretion, which in turn can affect sow litter size.
View Article and Find Full Text PDFParthenogenesis activation (PA), as an important artificial breeding method, can stably preserve the dominant genotype of a species. However, the delayed development of PA embryos is still overly severe and largely leads to pre-implantation failure in pigs. The mechanisms underlying the deficiencies of PA embryos have not been completely understood.
View Article and Find Full Text PDFSkeletal muscle growth plays a critical role during porcine muscle development stages. Genome-wide transcriptome analysis reveals that long intergenic non-coding RNAs (lincRNAs) are implicated as crucial regulator involving in epigenetic regulation. However, comprehensive analysis of lincRNAs in embryonic muscle development stages remain still elusive.
View Article and Find Full Text PDFObjective: Our goal was to automatically identify the cementoenamel junction (CEJ) location in ultrasound images using deep convolution neural networks (CNNs).
Methods: Three CNNs were evaluated using 1400 images and data augmentation. The training and validation were performed by an experienced nonclinical rater with 1000 and 200 images, respectively.
Aim: To demonstrate the feasibility of the 3D ultrasound periodontal tissue reconstruction of the lateral area of a porcine mandible using standard 2D ultrasound equipment and spatial positioning reading sensors.
Material And Method: Periodontal 3D reconstructions were performed using a free-hand prototype based on a 2D US scanner and a spatial positioning reading sensor. For automated data processing, deep learning algorithms were implemented and trained using semi-automatically seg-mented images by highly specialized imaging professionals.
MiRNAs-containing extracellular vesicles (EVs) possess the unique function of mediating intercellular communication and participating in many biological processes such as post-transcriptional gene regulation of embryo implantation and placental development. In the present study, Illumina small-RNA sequencing was used to identify differentially expressed (DE) miRNAs in serum EVs of pregnant (P) and non-pregnant (NP) Kazakh sheep at Day 17 from mating. The specifically and differentially expressed miRNAs at early pregnancy in sheep were verified by using RT-PCR.
View Article and Find Full Text PDFThe difference between the skeletal muscle growth rates of Western and domestic breeds is remarkable, but the potential regulatory mechanism involved is still unclear. Numerous studies have pointed out that long intergenic noncoding RNA (lincRNA) plays a key role in skeletal muscle development. This study used published Yorkshire (LW) and Tibetan pig (TP) transcriptome data to explore the possible role of lincRNA in the difference in skeletal muscle development between the two breeds.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs that play an important role in growth and development by regulating gene expression and participating in a variety of biological processes. However, the role of circRNAs in porcine follicles remains unclear. Therefore, this study examined middle-sized ovarian follicles obtained from Meishan and Duroc sows at day 4 of the follicular phase.
View Article and Find Full Text PDFBackground And Objective: Digital smile design is the technique that dentists use to analyze, design, and visualize therapeutic results on a computing workstation prior to actual treatment. Despite it being a crucial step in digital smile design, the process of labeling and integrating the information in facial and intra-oral images is laborious. Therefore, this study aims to develop an automated photo integrating system to facilitate this process.
View Article and Find Full Text PDFIntramuscular fat (IMF) content is closely related to various meat traits, such as tenderness, juiciness, and flavor. The IMF content varies considerably among pig breeds with different genetic backgrounds. Long intergenic non-coding RNAs (lincRNAs) have been widely identified in many species and found to be an important class of regulators that can participate in multiple biological processes.
View Article and Find Full Text PDFThe fabrication technique determines the physicochemical and biological properties of scaffolds, including the porosity, mechanical strength, osteoconductivity, and bone regenerative potential. Biphasic calcium phosphate (BCP)-based scaffolds are superior in bone tissue engineering due to their suitable physicochemical and biological properties. We developed an indirect selective laser sintering (SLS) printing strategy to fabricate 3D microporous BCP scaffolds for bone tissue engineering purposes.
View Article and Find Full Text PDFAlthough thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5'- and 3'-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (), namely, v1 and v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript v2.
View Article and Find Full Text PDFMuscle growth and fat deposition are the two important biological processes in the development of pigs which are closely related to the pig production performance. Long intergenic noncoding RNAs (lincRNAs), with lack of coding potential and the length of at least 200nt, have been extensively studied to play important roles in many biological processes. However, the importance and molecular regulation mechanism of lincRNAs in the process of muscle growth and fat deposition in pigs are still to be further studied comprehensively.
View Article and Find Full Text PDFLong intergenic non-coding RNAs (lincRNAs) have been considered to play a key regulatory role in various biological processes. An increasing number of studies have utilized transcriptome analysis to obtain lincRNAs with functions related to cancer, but lincRNAs affecting growth rates in weaned piglets are rarely described. Although lincRNAs have been systematically identified in various mouse tissues and cell lines, studies of lincRNA in pigs remain rare.
View Article and Find Full Text PDFAn increasing number of studies have shown that long intergenic non-coding RNAs (lincRNAs) are a very important class of non-coding RNAs that plays a vital role in many biological processes. Adipose tissue is an important place for storing energy, but few studies on lincRNAs were related to pig subcutaneous fat development. Here, we used published RNA-seq data from subcutaneous adipose tissue of Italian Large White pigs and identified 252 putative lincRNAs, wherein 34 were unannotated.
View Article and Find Full Text PDF