The flowering plant life cycle is completed by an alternation of diploid and haploid generations. The diploid sporophytes produce initial cells that undergo meiosis and produce spores. From haploid spores, male or female gametophytes, which produce gametes, develop.
View Article and Find Full Text PDFIn flowering plants, the success of fertilization depends on the rapid polar extension of a pollen tube, which delivers sperm cells to the female gametophyte for fertilization. Numerous studies have shown that the microenvironment in planta is more conducive to the growth and development of pollen tubes than that in vitro. However, how stigma factors coordinate to regulate pollen tube growth is still poorly understood.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Programmed cell death (PCD) is essential for animal and plant development. However, the knowledge of the mechanism regulating PCD in plants remains limited, largely due to technical limitations. Previously, we determined that the protease NtCP14 could trigger PCD in the embryonic suspensor of tobacco (Nicotiana tabacum), providing a unique opportunity to overcome the limitations by creating synchronous two-celled proembryos with ongoing PCD for transcriptome analysis and regulatory factor screening.
View Article and Find Full Text PDFFertilization introduces parental genetic information into the zygote to guide embryogenesis. Parental contributions to postfertilization development have been discussed for decades, and the data available show that both parents contribute to the zygotic transcriptome, suggesting a paternal role in early embryogenesis. However, because the specific paternal effects on postfertilization development and the molecular pathways underpinning these effects remain poorly understood, paternal contribution to early embryogenesis and plant development has not yet been adequately demonstrated.
View Article and Find Full Text PDFBody axis establishment is one of the earliest patterning events in plant embryogenesis. Asymmetric zygote division is critical for apical-basal axis formation in Arabidopsis (Arabidopsis thaliana). However, how the orientation of the cell division plane is regulated and its relation to apical-basal axis establishment and proper position of embryos in grasses remain poorly understood.
View Article and Find Full Text PDFAutophagy modulates the degradation and recycling of intracellular materials and contributes to male gametophyte development and male fertility in plants. However, whether autophagy participates in seed development remains largely unknown. Here, we demonstrate that autophagy is crucial for timely programmed cell death (PCD) in the integumentary tapetum, the counterpart of anther tapetum, influencing embryo pattern formation and seed viability.
View Article and Find Full Text PDFDuring double fertilization in angiosperms, the pollen tube delivers two sperm cells into an embryo sac; one sperm cell fuses with an egg cell, and the other sperm cell fuses with the central cell. It has long been proposed that the preference for fusion with one or another female gamete cell depends on the sperm cells and occurs during gamete recognition. However, up to now, sperm-dependent preferential fertilization has not been demonstrated, and results on preferred fusion with either female gamete have remained conflicting.
View Article and Find Full Text PDFCrop breeding schemes can be significantly accelerated by using (doubled) haploid plants. In vivo haploid induction has been applied in plant breeding for decades but is still not available for all crops and genotypes, and haploidization rates are generally very low. Therefore, methodological improvements to and new concepts for haploidization are required.
View Article and Find Full Text PDFIn angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Sexual reproduction involves the fusion of two gametes of opposite sex. Although the sperm-expressed fusogen HAPLESS 2 (HAP2) or GENERATIVE CELL SPECIFIC 1 (GCS1) plays a vital role in this process in many eukaryotic organisms and an understanding of its regulation is emerging in unicellular systems [J. Zhang , 12, 4380 (2021); J.
View Article and Find Full Text PDFBackground: Overproduction of endothelial extracellular vesicles (eEVs) is correlated with pulmonary hypertension progression, but the precise mechanism remains largely unclear.
Methods: MicroRNA-chip and real-time polymerase chain reaction were conducted to screen and validate microRNA profiles in blood plasma eEVs of rats and human with or without cigarette smoking. Pulmonary artery smooth muscle cells were cultured to study signaling pathways.
During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation.
View Article and Find Full Text PDFIn flowering plants, hydration of desiccated pollen grains on stigma is a prerequisite for pollen germination, during which pollen increase markedly in volume through water uptake, requiring them to survive hypoosmotic shock to maintain cellular integrity. However, the mechanisms behind the adaptation of pollen to this hypoosmotic challenge are largely unknown. Here, we identify the Qc-SNARE protein SYP72, which is specifically expressed in male gametophytes, as a critical regulator of pollen survival upon hypoosmotic shock during hydration.
View Article and Find Full Text PDFThe maternal-to-zygotic transition (MZT) is a major developmental transition in the life cycles of animals. It consists of two associated processes: maternal transcript clearance and zygotic genome activation (ZGA). The concept of MZT has been controversially discussed in plants.
View Article and Find Full Text PDFJ Integr Plant Biol
February 2022
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development.
View Article and Find Full Text PDFAutophagy is a mechanism by which damaged or unwanted cells are degraded and their constituents recycled. Over the past decades, research focused on autophagy has expanded from yeast to mammals and plants, and the core machinery regulating autophagy appears to be conserved. In plants, autophagy has essential roles in responses to stressful conditions and also contributes to normal development, especially in the context of reproduction.
View Article and Find Full Text PDFSignal molecule hydrogen peroxide (HO) plays critical roles in various processes of plant development. However, HO signaling network, especially the responders that sense and respond to the HO signal remain largely unknown. Here we report two homologous genes HO Response Gene 1 and 2 (HRG1/2) in Arabidopsis that could quickly respond to exogenous or endogenous HO.
View Article and Find Full Text PDFThe seeds of flowering plants contain three genetically distinct structures: the embryo, endosperm, and seed coat. The embryo and endosperm need to interact and exchange signals to ensure coordinated growth. Accumulating evidence has confirmed that embryo growth is supported by the nourishing endosperm and regulated by signals originating from the endosperm.
View Article and Find Full Text PDFUpon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy.
View Article and Find Full Text PDFBackground: The mevalonate pathway generates endogenous cholesterol and intermediates including geranylgeranyl pyrophosphate (GGPP). By reducing GGPP production, statins exert pleiotropic or cholesterol-independent effects. The potential regulation of GGPP homeostasis through dietary intake and the interaction with concomitant statin therapy is unknown.
View Article and Find Full Text PDFThe male gametophyte of angiosperms has long been recognized as an ideal system for the study of the molecular mechanisms regulating cell fate determination. Recent findings on histone variants in two cell lineages, vegetative-cell-derived small interfering RNA and transposable element expression provide new power for relevant investigations.
View Article and Find Full Text PDFAutophagy
January 2021
Proc Natl Acad Sci U S A
February 2021
Plant fertilization involves both an egg cell, which fuses with a sperm cell, and synergid cells, which guide pollen tubes for sperm cell delivery. Therefore, egg and synergid cell functional specifications are prerequisites for successful fertilization. However, how the egg and synergid cells, referred to as the "egg apparatus," derived from one mother cell develop into distinct cell types remains an unanswered question.
View Article and Find Full Text PDF