Publications by authors named "Mengxiang Ma"

Metallic lithium (Li) is considered as the "Holy Grail" anode material for next-generation energy storage systems due to its extremely high theoretical capacity and low electrochemical potential. Before the commercialization of the Li electrode, dendritic Li growth and the unstable solid electrolyte interphase layer should be conquered. Herein, a hybrid covalent adaptable polymer network (HCAPN) is prepared via the random copolymerization of poly(ethylene glycol) methyl ether methacrylate and -acetoacetoxyethyl methacrylate, followed by chemical cross-linking with polyethylenimine (PEI) and amine-modified silicon dioxide (SiO).

View Article and Find Full Text PDF

Lithium (Li) metal is a highly promising anode material for next-generation high-energy-density batteries, while Li dendrite growth and the unstable solid electrolyte interphase layer inhibit its commercialization. Herein, a chemically grafted hybrid dynamic network (CHDN) is rationally designed and synthesized by the 4,4'-thiobisbenzenamine cross-linked poly(poly(ethylene glycol) methyl ether methacrylate--glycidyl methacrylate) and (3-glycidyloxypropyl) trimethoxysilane-functionalized SiO nanoparticles, which is utilized as a protective layer and hybrid solid-state electrolyte (HSE) for stable Li-metal batteries. The presence of a dynamic exchangeable disulfide affords self-heability and recyclability, and the chemical attachment between SiO nanoparticles and the polymer matrix enables the homogeneous distribution of inorganic fillers and mechanical robustness.

View Article and Find Full Text PDF

For cemented paste backfill (CPB), uniaxial compressive strength (UCS) is the key to ensuring the safety of stope construction, and its cost is an important part of the mining cost. However, there are a lack of design methods based on UCS and cost optimization. To address such issues, this study proposes a biobjective optimization approach by applying a novel evolved random forest (RF) model.

View Article and Find Full Text PDF

With many reported attempts on fabricating single-ion conducting polymer electrolytes, they still suffer from low ionic conductivity, narrow voltage window, and high cost. Herein, we report an unprecedented approach on improving the cationic transport number () of the polymer electrolyte, , single-ion conducting polymeric protective interlayer (SIPPI), which is designed between the conventional polymer electrolyte (PVEC) and Li-metal electrode. Satisfied ionic conductivity (1 mS cm, 30 °C), high (0.

View Article and Find Full Text PDF