Publications by authors named "Mengxi Sun"

Background: This study aimed to investigate the impact of a comprehensive nursing intervention targeting high water and salt intake on blood pressure and volume burden in patients with chronic renal failure.

Method: From January 2020 to January 2023, 120 patients diagnosed with chronic renal failure were treated at our hospital. Participants were randomly allocated to either a control group ( = 60) receiving standard dietary education or an observation group ( = 60) receiving intensive water-salt diet nursing intervention alongside standard education.

View Article and Find Full Text PDF

Upland cotton (Gossypium hirsutum) is a principal economic crop and a fundamental raw material for the textile industry. The quality of cotton fibres is significantly influenced by the synthesis of cell wall polysaccharides. This study focuses on GhIRX10, a beta-1,4-xylosyltransferase crucial for xylan backbone synthesis.

View Article and Find Full Text PDF

This study investigates how hibernation affects the surface activity of pulmonary surfactant with respect to temperature and breathing pattern. Surfactant was isolated from a hibernating species, the 13-lined ground squirrel, and a homeotherm, the rabbit, and analysed for biophysical properties on a constrained sessile drop surfactometer. The results showed that surfactant from ground squirrels reduced surface tension better at low temperatures, including when mimicking episodic breathing, as compared with rabbit surfactant.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the GhVOZ1 transcription factor in cotton's response to salt stress, revealing its high expression in the stamen and stem under normal conditions and a significant increase after salt treatment.
  • Overexpression of GhVOZ1 in transgenic plants demonstrated its positive regulation of the Vacuolar Proton Pump Pyrophosphatase (AVP1) gene, essential for managing salt stress.
  • The GhVOZ1-AVP1 interaction is crucial for maintaining sodium ion homeostasis and enhancing salt tolerance in cotton, highlighting its potential for improving crops under saline conditions.
View Article and Find Full Text PDF

Background: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking.

Results: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperprolactinemia and metabolic issues are common side effects of antipsychotics, leading to treatment intolerance, yet there are no solid guidelines for switching medications in these cases.
  • The study analyzed 177 patients with hyperprolactinemia from amisulpride and 274 with metabolic disturbances from olanzapine, finding that higher baseline PANSS scores indicated a greater likelihood of relapse after switching medications.
  • Switching to aripiprazole was associated with an increased risk of relapse while providing benefits like reduced prolactin levels for amisulpride users; however, it did not help in reducing weight or blood sugar levels for those on olanzapine.
View Article and Find Full Text PDF

Soil salinization conditions seriously restrict cotton yield and quality. Related studies have shown that the DUF4228 proteins are pivotal in plant resistance to abiotic stress. However, there has been no systematic identification and analysis of the DUF4228 gene family in cotton and their role in abiotic stress.

View Article and Find Full Text PDF

Rationale: It is controversial whether dyslipidemia induced by antipsychotics in schizophrenia patients is due to weight gain or direct effects of drug treatment. However, recent evidence showed that olanzapine can cause acute dyslipidemia independent of weight change, and the underlying mechanism remains unclear.

Objective: To study the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in olanzapine-induced dyslipidemia, we analyzed in schizophrenic patients and in experimental models involving mice and cells to understand the mechanism.

View Article and Find Full Text PDF

The SWEET (sugars will eventually be exported transporter) proteins, a family of sugar transporters, mediate sugar diffusion across cell membranes. Pathogenic fungi can acquire sugars from plant cells to satisfy their nutritional demands for growth and infection by exploiting plant SWEET sugar transporters. However, the mechanism underlying the sugar allocation in cotton plants infected by , the causative agent of wilt, remains unclear.

View Article and Find Full Text PDF

Gaining a mechanistic understanding of the expansion and maturation program of natural killer (NK) cells will provide opportunities for harnessing their inflammation-inducing and oncolytic capacity for therapeutic purposes. Here, we demonstrated that ID2, a transcriptional regulatory protein constitutively expressed in NK cells, supports NK cell effector maturation by controlling the amplitude and temporal dynamics of the transcription factor TCF1. TCF1 promotes immature NK cell expansion and restrains differentiation.

View Article and Find Full Text PDF

Affecting ~1% of the world population, schizophrenia is known as one of the costliest and most burdensome diseases worldwide. Antipsychotic medications are the main treatment for schizophrenia to control psychotic symptoms and efficiently prevent new crises. However, due to poor compliance, 74% of patients with schizophrenia discontinue medication within 1.

View Article and Find Full Text PDF

Notch activation is highly prevalent among cancers, in particular T-cell acute lymphoblastic leukemia (T-ALL). However, the use of pan-Notch inhibitors to treat cancers has been hampered by adverse effects, particularly intestinal toxicities. To circumvent this barrier in T-ALL, we aimed to inhibit ETS1, a developmentally important T-cell transcription factor previously shown to co-bind Notch response elements.

View Article and Find Full Text PDF

Natural killer cells are lymphocytes that respond rapidly to intracellular pathogens or cancer/stressed cells by producing pro-inflammatory cytokines or chemokines and by killing target cells through direct cytolysis. NK cells are distinct from B and T lymphocytes in that they become activated through a series of broadly expressed germ line encoded activating and inhibitory receptors or through the actions of inflammatory cytokines. They are the founding member of the innate lymphoid cell family, which mirror the functions of T lymphocytes, with NK cells being the innate counterpart to CD8 T lymphocytes.

View Article and Find Full Text PDF

Chronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients, and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL-17 receptor A (IL-17ra-/-) or pharmacological blockade of IL-17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice and blocked alcohol-induced hepatocellular and neurological damage.

View Article and Find Full Text PDF

Background & Aims: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA.

Methods: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens.

Results: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra and major urinary protein-urokinase-type plasminogen activator/Il-17ra mice compared with wild-type mice.

View Article and Find Full Text PDF

The basic leucine zipper transcription factor activating transcription factor-like (Batf) contributes to transcriptional programming of multiple effector T cells and is required for T helper 17 (Th17) and T follicular helper (Tfh) cell development. Here, we examine mechanisms by which Batf initiates gene transcription in developing effector CD4 T cells. We find that, in addition to its pioneering function, Batf controls developmentally regulated recruitment of the architectural factor Ctcf to promote chromatin looping that is associated with lineage-specific gene transcription.

View Article and Find Full Text PDF

Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage.

View Article and Find Full Text PDF

Antipsychotic-induced weight gain is one of the most common adverse effects of antipsychotic treatment. However, there are no well-established interventions for the weight gain yet. In this study, we pooled the data from two clinical trials, which were originally examining the efficacy of betahistine and the efficacy of metformin in treating antipsychotic-induced weight gain and insulin resistance.

View Article and Find Full Text PDF

Cytochrome P450 2E1 () plays an important role in alcohol and toxin metabolism by catalyzing the conversion of substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and liver fibrosis. Here, we analyzed mice expressing only the human gene (hCYP2E1) to determine differences in hCYP2E1 versus endogenous mouse Cyp2e1 function with different liver injuries.

View Article and Find Full Text PDF

The transcriptional repressor Id2 is constitutively expressed in all innate lymphoid cells (ILCs) and is required for their development. In this issue of Immunity, Mowel et al. (2017) demonstrate that Id2 expression is regulated by a cell type-specific cis-regulatory element in group 1 ILCs that is demarcated by a long non-coding RNA.

View Article and Find Full Text PDF

Cholestatic liver fibrosis is caused by obstruction of the biliary tract and is associated with early activation of portal fibroblasts (PFs) that express Thy-1, fibulin 2, and the recently identified marker mesothelin (MSLN). Here, we have demonstrated that activated PFs (aPFs) and myofibroblasts play a critical role in the pathogenesis of liver fibrosis induced by bile duct ligation (BDL). Conditional ablation of MSLN+ aPFs in BDL-injured mice attenuated liver fibrosis by approximately 50%.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells include natural killer (NK) cells and ILC1s, which mediate the response to intracellular pathogens. Thymic NK (tNK) cells were described with hybrid features of immature NK cells and ILC1 but whether these cells are related to NK cells or ILC1 has not been fully investigated. We report that murine tNK cells expressed the NK-cell associated transcription factor EOMES and developed independent of the essential ILC1 factor TBET, confirming their placement within the NK lineage.

View Article and Find Full Text PDF

Post-translational modification (PTM) of nuclear receptor superfamily members regulates various aspects of their biology to include sub-cellular localization, the repertoire of protein-binding partners, as well as their stability and mode of degradation. The nuclear receptor pregnane X receptor (PXR, NR1I2) is a master-regulator of the drug-inducible gene expression in liver and intestine. The PXR-mediated gene activation program is primarily recognized to increase drug metabolism, drug transport, and drug efflux pathways in these tissues.

View Article and Find Full Text PDF
Reversibility of liver fibrosis.

Clin Res Hepatol Gastroenterol

September 2015

Liver fibrosis is a serious health problem worldwide, which can be induced by a wide spectrum of chronic liver injuries. However, until today, there is no effective therapy available for liver fibrosis except the removal of underlying etiology or liver transplantation. Recent studies indicate that liver fibrosis is reversible when the causative agent(s) is removed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session58q647u2t723fthrnsnse0472l1cth2l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once