JMIR Public Health Surveill
February 2024
Background: COVID-19 screening is an effective nonpharmaceutical intervention for identifying infected individuals and interrupting viral transmission. However, questions have been raised regarding its effectiveness in controlling the spread of novel variants and its high socioeconomic costs. Therefore, the optimization of COVID-19 screening strategies has attracted great attention.
View Article and Find Full Text PDFRemote sensing monitoring of particulate organic carbon (POC) concentration is essential for understanding phytoplankton productivity, carbon storage, and water quality in global lakes. Some algorithms have been proposed, but only for regional eutrophic lakes. Based on in-situ data (N = 1269) in 49 lakes across China, we developed a blended POC algorithm by distinguishing Type-I and Type-II waters.
View Article and Find Full Text PDFBackground: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads rapidly and insidiously. Coronavirus disease 2019 (COVID-19) screening is an important means of blocking community transmission in China, but the costs associated with testing are high. Quarantine capacity and medical resources are also threatened.
View Article and Find Full Text PDFUnderstanding the intercity poultry trading network is crucial for assessing the risk of avian influenza prevalence. Unfortunately, the poultry trading network in China has rarely been described. Here, with a modified radiation model, we obtain values for a proxy variable for poultry trade flows among 318 prefecture-level cities in China in 2015 utilizing the product capacity and demand quantity of poultry of the cities.
View Article and Find Full Text PDFBackground: The continuous mutation of severe acute respiratory syndrome coronavirus 2 has made the coronavirus disease 2019 (COVID-19) pandemic complicated to predict and posed a severe challenge to the Beijing 2022 Winter Olympics and Winter Paralympics held in February and March 2022.
Methods: During the preparations for the Beijing 2022 Winter Olympics, we established a dynamic model with pulse detection and isolation effect to evaluate the effect of epidemic prevention and control measures such as entry policies, contact reduction, nucleic acid testing, tracking, isolation, and health monitoring in a closed-loop management environment, by simulating the transmission dynamics in assumed scenarios. We also compared the importance of each parameter in the combination of intervention measures through sensitivity analysis.
Background: The coronavirus disease 2019 (COVID-19) epidemic, considered as the worst global public health event in nearly a century, has severely affected more than 200 countries and regions around the world. To effectively prevent and control the epidemic, researchers have widely employed dynamic models to predict and simulate the epidemic's development, understand the spread rule, evaluate the effects of intervention measures, inform vaccination strategies, and assist in the formulation of prevention and control measures. In this review, we aimed to sort out the compartmental structures used in COVID-19 dynamic models and provide reference for the dynamic modeling for COVID-19 and other infectious diseases in the future.
View Article and Find Full Text PDF