Although an increasing body of evidence supports the crucial role of the SEC24 Homolog D, COPII Coat Complex Component (SEC24D) gene in the initiation and progression of cancer, a comprehensive pan-cancer analysis of this gene is still lacking. In this study, we conducted an extensive investigation of SEC24D, aiming to elucidate its potential role and underlying mechanisms across multiple human tumors. Our analysis relied on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
View Article and Find Full Text PDFTwo-dimensional (2D) boron nanomaterials have received considerable attention due to their distinct physicochemical properties in contrast to bulk boron. However, the susceptibility to oxidation in air has limited their practical applications. In this study, we synthesize an environmentally stable bifunctionalized boron nanosheet a wet chemical route.
View Article and Find Full Text PDFWearable temperature sensors with high sensitivity and stability hold great potential for human health monitoring. However, hydrogels, which are commonly used for wearable devices, often show poor thermal and electrical conductivity and are susceptible to dehydration and freezing. Herein, we developed a frost- and dehydration-resistive temperature sensor based on Fe/TiCT/κ-carrageenan (CA)-polyacrylamide (PAM) hydrogel.
View Article and Find Full Text PDFDue to the lack of sensitive biomarkers, cancer disease kill 9.6 million individuals each year around the globe. The present study aimed to explore the association between ELL Associated Factor 2 (EAF2) expression and its diagnostic and prognostic landscape across different human cancers using an and approach.
View Article and Find Full Text PDFAlthough titanium-based MXenes have been widely reported for gas sensing, the effect of crystal stoichiometric variations on the sensing properties has been rarely reported. Herein, stoichiometric polymorphs of titanium carbide MXenes (, TiCT and TiCT) loaded with Pd nanodots (NDs) prepared by photochemical reduction were investigated for room-temperature H sensing. Interestingly, we found that Pd/TiCT exhibited greatly enhanced sensitivity to H, along with faster response and recovery rates compared to Pd/TiCT.
View Article and Find Full Text PDFIron tailing solid waste not only has a high annual output but also has a low comprehensive utilization rate. Low utilization rate of iron tailings seriously restricts the development of comprehensive utilization of solid waste. In order to prepare an iron tailings-based ternary solid waste admixture and to verify its application to concrete, first, the effect of solid waste synergy on the strength of an iron tailings-steel slag-desulfurization ash admixture (ISD) system was investigated.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have been recognized as one of the most promising pharmaceutical multipotent cells, and a key step for their wide application is to safely and efficiently regulate their activities. Various methods have been proposed to regulate the directional differentiation of MSCs during tissue regeneration, such as nanoparticles and metal ions. Herein, nanoscale zeolitic imidazolate framework-8 (ZIF-8), a Zn-based metal-organic framework, is modified to direct MSCs toward an osteoblast lineage.
View Article and Find Full Text PDFA hydroxyl-functionalized boron nanosheet is developed as the filler material for the solid-state electrolyte (SSE) of lithium batteries. The nanosheet exhibits good oxidation resistance and thermal stability. Its composite SSE shows high ionic conductivity, and the resulting batteries present much enhanced capacities, rate capability and cycling performance, proving the electrochemical advances of the boron nanosheet.
View Article and Find Full Text PDFAlthough engineered nanoparticles loaded with specific growth factors are used to regulate differentiation of stem cells, the low loading efficiency and biocompatibility are still great challenges in tissue repair. A nature-inspired biomimetic delivery system with targeted functions is attractive for enhancing cell activity and controlling cell fate. Herein, a stem cell membrane (SCM)-wrapped dexamethasone (DEX)-loaded zeolitic imidazolate framework-8 (ZIF-8) is constructed, which integrates the synthetic nanomaterials with native plasma membrane, to achieve efficient DEX delivery and DEX-mediated bone repair.
View Article and Find Full Text PDFNeural stem cells (NSCs) therapy is promising for treating neurodegenerative disorders and neural injuries. However, the limited in vitro expansion, spontaneous differentiation, and decrease in stemness obstruct the acquisition of high quantities of NSCs, restricting the clinical application of cell-based therapies and tissue engineering. This article reports a facile method of promoting NSCs expansion and maintaining stemness using wireless electrical stimulation triggered by piezoelectric nanomaterials.
View Article and Find Full Text PDF