This research focuses on the evolution of mechanical behavior of bimodal mixtures undergoing compaction and diametrical compression. The clusters were built and discrete element method (DEM) was used to investigate the densification process and micromechanics of bimodal mixtures. Additionally, a more comprehensive investigate of the respective breakage of the bimodal mixtures has been carried out.
View Article and Find Full Text PDFIn high shear wet granulation (HSWG), the interaction mechanism between binder and powder with different sugar content is still unclear. Herein, the law and mechanism of the interaction between binder and powder were studied on the molecular level by combining experiment analysis through the Kriging model and molecular dynamics (MD) simulation. For the sticky powder with high sugar content, the ethanol in the binder played a pivotal role in dispersing water into powders, and the amount of water determined the growth of granules.
View Article and Find Full Text PDFTo provide a theoretical foundation and a good understanding for the real manufacturing granulation process, this paper investigates the effect of particle properties on the mixing process in the high-shear wet granulator, a common equipment in one of the key technologies in the growth of the pharmaceutical industry that has rarely been used to examine particle mixing-related problems in previous numerical simulations. The discrete element method (DEM) and the relative standard deviation (RSD) to explore binary particle systems with a range of sizes, densities, and volume fractions, and measure the mixing homogeneity of the particles. Results show that, for binary particle systems, particle size, density, and volume fraction all significantly affect mixing homogeneity, with good mixing occurring for a single size and a 1:1 volume fraction for the same density.
View Article and Find Full Text PDF