Genomics studies have detected numerous genetic alterations in esophageal squamous cell carcinoma (ESCC). However, the functions of these mutations largely remain elusive, partially due to a lack of feasible animal models. Here, we report a convenient platform with CRISPR-Cas9-mediated introduction of genetic alterations and orthotopic transplantation to generate a series of primary ESCC models in mice.
View Article and Find Full Text PDFGastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming.
View Article and Find Full Text PDFNasopharyngeal carcinoma (NPC), a squamous cell carcinoma originating in the nasopharynx, is a leading malignancy in south China and other south and east Asia areas. It is frequently associated with Epstein-Barr virus (EBV) infection, while there are also some NPC patients without EBV infection. Here, it is shown that the EBV+ (EBV positive) and EBV- (EBV negative) NPCs contain both shared and distinct genetic abnormalities, among the latter are increased mutations in TP53.
View Article and Find Full Text PDFEndometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported.
View Article and Find Full Text PDFGastric cancer (GC) is one of the most frequent and lethal malignancies in the world. However, our understanding of the mechanisms underlying its initiation and progression is limited. Here, we generate a series of primary GC models in mice with genome-edited gastric organoids, which elucidate the genetic drivers for sequential transformation from dysplasia to well-differentiated and poorly differentiated GC.
View Article and Find Full Text PDFSmall cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice.
View Article and Find Full Text PDFSignal Transduct Target Ther
April 2022
The cell identity of malignant cells and how they acquire it are fundamental for our understanding of cancer. Here, we report that esophageal squamous cell carcinoma (ESCC) cells display molecular features equally similar but distinct to all three types of normal esophageal epithelial cells, which we term as confused cell identity (CCI). CCI is an independent prognostic marker associated with poor prognosis in ESCC.
View Article and Find Full Text PDFBy employing tert-butyl nitrite as both nitrogen source and oxidant, the trifluoromethyloximation of alkenes proceeds smoothly in a free-radical process. The developed difunctionalization reaction enables practical and efficient synthesis of a wide range of α-CF ketoximes in moderate yields with excellent regioselectivity. This method features the use of readily available and stable alkenes as substrates and inexpensive CF SO Na as a CF reagent, no involvement of transition metals or external oxidant, and room-temperature conditions.
View Article and Find Full Text PDF