Publications by authors named "Mengru Fu"

Amino acid/auxin permeases (AAAPs) play crucial roles in plant development and response to environmental stimuli. They have been characterized at genome-wide levels in several plant species. However, little is known about the AAAP genes in Gossypium.

View Article and Find Full Text PDF

Decabromodiphenyl ethane (DBDPE) and cadmium (Cd) are typical pollutants in e-waste, seriously threatening crop growth. This study investigated the bioaccumulation and toxicity mechanisms of DBDPE and Cd in a soil-rice system. The results showed that 50 mg/kg DBDPE could reduce the level of accumulation of Cd in rice roots.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals reported in daily supplies, and skin absorption is one of the routes for human exposure to PFASs. This study aims to evaluate the potential risk of PFASs exposure from cosmetics and personal care products in China. A random sampling of 44 domestic cosmetics and personal care products, summarized into 6 categories, was conducted to investigate the concentrations of 24 target PFASs.

View Article and Find Full Text PDF

Numerous studies have shown that the Krüppel-like factors (KLFs) family of transcription factors regulate various eukaryotic physiological processes including the proliferation, differentiation, senescence, death, and carcinogenesis of animal cells. In addition, they are involved in the regulation of key biological processes such as cell cycle, DNA repair, and immune response. Current studies focus on investigating the role of KLFs in normal physiological conditions and the incidence and development of diseases.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) and their substitutes, novel brominated flame retardants (NBFRs), are ubiquitously present in the aquatic environment of electronic waste (e-waste) dismantling region, leading to their inevitable absorption and accumulation by aquatic organisms, which can be transferred to human via directly aquatic product consumption or through food chain, thereby posing potential health risks. This study focused on fish samples from Guiyu and its surrounding areas, and found the total PBDEs concentrations were 24-7400 ng/g lw (mean: 1800 ng/g lw) and the total NBFRs concentrations were 14 to 2300 ng/g lw (mean: 310 ng/g lw). Significant positive correlations were found among PBDE congeners, among different NBFRs, and between NBFRs and commercial PBDEs that they replace.

View Article and Find Full Text PDF

The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure.

View Article and Find Full Text PDF

The pollution of various brominated flame retardants (BFRs) is concurrence, while their environmental fate and toxicology in water-sediment-submerged plant systems remain unclear. In this study, Vallisneria natans plants were co-exposed to 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ether (BDE209), and decabromodiphenyl ethane (DBDPE). The ∑BFRs concentration in the root was 2.

View Article and Find Full Text PDF
Article Synopsis
  • Decabromodiphenyl ethane (DBDPE) is a commonly used brominated flame retardant that has become a widespread pollutant, but its effects on vegetable growth have not been thoroughly studied.
  • The study focused on hydroponic lettuce, finding that DBDPE accumulates more in the roots than in the leaves, causing oxidative stress that triggers the plant's antioxidant defenses and slight damage to cell structures.
  • Additionally, DBDPE disrupts metabolic pathways related to amino acid and energy production, leading to reduced chlorophyll content and root activity, while also suggesting a need for further research on the safety of vegetables in relation to emerging pollutants.
View Article and Find Full Text PDF
Article Synopsis
  • * Results showed that after 28 days, earthworms exposed to DBDPE and MPs had 2.61 times more DBDPE in their tissues compared to those exposed only to DBDPE.
  • * MPs not only facilitated the uptake of DBDPE through adsorption but also negatively impacted earthworm health, leading to enhanced accumulation of DBDPE in their bodies, highlighting risks posed by the combination of MPs and novel brominated flame retardants (NBFRs).
View Article and Find Full Text PDF

Brominated flame retardants (BFRs) are widely used in various productions. As typical BFRs, polybrominated diphenyl ethers (PBDEs) are prohibited because of their toxicity and persistence. Some of the alternatives to PBDEs, new brominated flame retardants (NBFRs), have also been found in the environment and some have assigned hazardous properties and were categorized as persistent.

View Article and Find Full Text PDF

The extensive applications of decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, have induced its accumulation in sediment, which may have a great negative impact on the ecological environment. In this work, the biochar/nano-zero-valent iron materials (BC/nZVI) were synthesized to remove DBDPE in the sediment. Batch experiments were carried out to investigate the influencing factors of the removal efficiency, and kinetic model simulation and thermodynamic parameter calculation were performed.

View Article and Find Full Text PDF

The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms.

View Article and Find Full Text PDF

Little is known about how brominated flame retardants (NBFRs) and microplastics (MPs) co-pollution influences soil organisms. Here, we investigated the impacts of acrylonitrile butadiene styrene (ABS)-MPs in soil on the 28-d dynamic bioaccumulation, tissue damage, and transcriptional responses of decabromodiphenyl ethane (DBDPE) in Eisenia fetida by simulating different pollution scenarios (10 mg kg DBDPE, 10 mg kg DBDPE accompanied by 0.1 % ABS-MPs, and 10 mg kg DBDPE accompanied by 0.

View Article and Find Full Text PDF

DBDPE and Cd are representative contaminants commonly found in electronic waste (e-waste), which tend to be gradually discharged and accumulated in the environment during e-waste dismantling, resulting in frequent outbreaks and detection of these pollutants. The toxicity of both chemicals to vegetables after combined exposure has not been determined. The accumulation and mechanisms of phytotoxicity of the two compounds, alone and in combination, were studied using lettuce.

View Article and Find Full Text PDF

The adsorption, desorption, and their influence factors of Cr(VI) by microplastics (MPs) in the solution was investigated in this study. The results demonstrated that UV aging promoted adsorption, while the increase of salinity and natural organic matter (NOM) inhibited adsorption. The particle size affected the total Cr(VI) active adsorption sites on MPs, while the pH changed the electrostatic force.

View Article and Find Full Text PDF

Decabromodiphenyl ethane (DBDPE) and microplastics (MPs), such as fossil-based polymers polyethylene (PE), polypropylene (PP), and bio-based plastics polylactic acid (PLA) are abundant in e-waste dismantling areas. However, the information on the effects of DBDPE combined with MPs (DBDPE-MPs) on earthworms is still limited. In this study, we explored the impacts of DBDPE-MPs on neurotoxic biomarkers, tissue damage, and transcriptomics of Eisenia fetida by simulating different exposure patterns of 10 mg kg DBDPE and 10 mg kg DBDPE-MPs (PLA, PP, and PE).

View Article and Find Full Text PDF

In the present study, we investigated the occurrence, distribution, and potential risks of 4 brominated flame retardants in farmland soils across 18 provinces of China. The total mean concentrations of the BFRs were in order as DBDPE > BDE209 > HBB > TBB. DBDPE concentration was highest at 177.

View Article and Find Full Text PDF

Brominated flame retardants (BFRs) are widely used because of their excellent flame retardant performance and are frequently detected in the soil environment. Their adverse impacts on soil organisms cannot be ignored. The enrichment and removal dynamics of the five BFRs (pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209)) in earthworms and different tissues (epidermis, intestinal tract, and cast) in the presence of co-exposure were explored for the first time.

View Article and Find Full Text PDF

Due to the characteristics of persistent organic pollutants (POPs), some legacy brominated flame retardants (LBFRs) were prohibited from use, and then gradually replaced by novel brominated flame retardants (NBFRs). However, till now little research focused on the effects of NBFRs on the benthos. In the present study, 0.

View Article and Find Full Text PDF

Our study evaluated the current occurrence, composition, and spatial distribution of eight congeners of polybrominated diphenyl ethers (PBDEs) and seven novel brominated flame retardants (NBFRs) in sediment from Guiyu, a typical e-waste dismantling region in China. PBDEs levels ranged from 0.345 to 401,000 ng/g dw and NBFRs levels ranged from 0.

View Article and Find Full Text PDF

Response of terrestrial invertebrates to decabromodiphenyl ethane (DBDPE) is an emerging field of research nowadays, while cytotoxicity of DBDPE and self-defense strategies of invertebrates are poorly understood. In this study, earthworms (Eisenia fetida) were incubated in the DBDPE-spiked soil system (10, 30, 50, 70, and 100 mg kg dw) for 28-d uptake. The bioaccumulation and distribution of DBDPE, a series of biomarkers associated with lysosomes/mitochondria, and the apoptosis rate of coelomocytes have been evaluated on the 7th, 14th, 21th, and 28th day.

View Article and Find Full Text PDF

As a novel brominated flame retardant (NBFR), decabromodiphenyl ethane (DBDPE) has been poorly understood for the environmental fate and toxicity in terrestrial invertebrates. For the first time, the bioaccumulation, elimination, metabolism and detoxification of DBDPE in earthworms as well as its potential impacts on soil microbes were investigated. The results showed much higher DBDPE concentrations in casts than in earthworms.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) play an important role in the initiation, metastasis, and invasion of breast cancer. However, whether autophagy acts as a tumor promotion mechanism by inducing epithelial-mesenchymal transition (EMT) is still controversial and remains undefined at the mechanistic levels. In this study, we investigated whether autophagy or FAP-α is required for the invasion, pulmonary metastasis and EMT of breast cancer cells and underlying mechanism.

View Article and Find Full Text PDF

Novel brominated flame retardants (NBFRs) are now ubiquitous in the environment with the extensive production and application. In the present study, pentabromotoluene (PBT), hexabromobenzene (HBB) and decabromodiphenyl ethane (DBDPE) were spiked into the sediments where mudsnails (Bellamya aeruginosa) were cultivated. In the 35-day enrichment process, the highest concentration of the three NBFRs measured in mudsnail is 2.

View Article and Find Full Text PDF