Publications by authors named "Mengqing Qiu"

Article Synopsis
  • The study identifies four sucrose transporter genes (AcSUTs) in pineapple, highlighting their roles in plant growth and response to cold stress.
  • Two specific transporters (AcSUT1A and AcSUT1B) were shown to effectively transport glucosides and had a strong affinity for sucrose, indicating their importance in nutrient uptake.
  • The research revealed that overexpressing AcSUT1B enhanced cold tolerance in transgenic Arabidopsis and established a link between the AcCBF1 protein and the activation of AcSUT1B under cold conditions, advancing our understanding of cold response mechanisms in pineapple.
View Article and Find Full Text PDF

The detection of polycyclic aromatic hydrocarbons (PAHs) on fruit and vegetable surfaces is important for protecting human health and ensuring food safety. In this study, a method for the in situ detection and identification of PAH residues on fruit and vegetable surfaces was developed using surface-enhanced Raman spectroscopy (SERS) based on a flexible substrate and lightweight deep learning network. The flexible SERS substrate was fabricated by assembling β-cyclodextrin-modified gold nanoparticles (β-CD@AuNPs) on polytetrafluoroethylene (PTFE) film coated with perfluorinated liquid (β-CD@AuNP/PTFE).

View Article and Find Full Text PDF

In this study, surface-enhanced Raman spectroscopy (SERS) charged probes and an inverted superhydrophobic platform were used to develop a detection method for agricultural chemicals residues (ACRs) in rice combined with lightweight deep learning network. First, positively and negatively charged probes were prepared to adsorb ACRs molecules to SERS substrate. An inverted superhydrophobic platform was prepared to alleviate the coffee ring effect and induce tight self-assembly of nanoparticles for high sensitivity.

View Article and Find Full Text PDF

Apple fruit damages seriously cause product and economic losses, infringe consumer rights and interests, and have harmful effects on human and livestock health. In this study, Raman spectroscopy (RS) and cascade forest (CForest) were adopted to determine apple fruit damages. First, the RS spectra of healthy, bruised, Rhizopus-infected, and Botrytis-infected apples were measured.

View Article and Find Full Text PDF

1-Hydroxypyrene (1-OHPyr), a typical hydroxylated polycyclic aromatic hydrocarbon (OH-PAH), has been commonly regarded as a urinary biomarker for assessing human exposure and health risks of PAHs. Herein, a fast and sensitive method was developed for the determination of 1-OHPyr in urine using surface-enhanced Raman spectroscopy (SERS) combined with deep learning (DL). After emulsification, urinary 1-OHPyr was separated using simple liquid-liquid extraction.

View Article and Find Full Text PDF

Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and severe infection kernels were measured and spectral changes and band attribution were analyzed.

View Article and Find Full Text PDF

MYB proteins constitute one of the largest transcription factor families in plants, members of which are involved in various plant physiological and biochemical processes. Japanese plum (Prunus salicina) is one of the important stone fruit crops worldwide. To date, no comprehensive study of the MYB family in Japanese plum has been reported.

View Article and Find Full Text PDF

A simple and sensitive method for detection of chlormequat chloride residue in wheat was developed using surface-enhanced Raman spectroscopy (SERS) coupled with chemometric methods on a portable Raman spectrometer. Pretreatment of wheat samples was performed using a two-step extraction procedure. Effective and uniform active substrate (gold nanorods) was prepared and mixed with the sample extraction solution for SERS measurement.

View Article and Find Full Text PDF

Dynamic surface-enhanced Raman spectroscopy (D-SERS) based on the state change of the substrate not only significantly enhances but also provides a highly reproducible Raman signal. Hence, we develop a fast and accurate method for the detection of fenthion on fruit and vegetable peel using D-SERS and random forests (RF) with variable selection. With uniform Ag nanoparticles, the dynamic spectra of fenthion solution at different concentrations were obtained using D-SERS, and fenthion solution greater than or equal to 0.

View Article and Find Full Text PDF

Unlabelled: Detection of residual farm chemicals in agricultural crops is a hot topic in the field of food safety. In this study, ediphenphos residue in rice was detected using surface-enhanced Raman spectroscopy (SERS) on a portable Raman spectrometer. A simple pretreatment method for rice samples was developed, and uniform gold nanorods were used for SERS measurement.

View Article and Find Full Text PDF