Front Cell Neurosci
January 2019
Diabetic encephalopathy (DE) is a diabetic complication characterized by alterations in cognitive function and nervous system structure. The pathogenic transition from hyperglycemia to DE is a long-term process accompanied by multiple metabolic disorders. Exploring time-dependent metabolic changes in hippocampus will facilitate our understanding of the pathogenesis of DE.
View Article and Find Full Text PDFDiabetes mellitus causes brain structure changes and cognitive decline, and it has been estimated that diabetes doubles the risk for dementia. Until now, the pathogenic mechanism of diabetes-associated cognitive decline (DACD) has remained unclear. Using metabolomics, we show that lactate levels increased over time in the hippocampus of rats with streptozotocin-induced diabetes, as compared with age-matched control rats.
View Article and Find Full Text PDFCognitive dysfunction is a central nervous system (CNS) complication of diabetes mellitus (DM) that is characterized by impaired memory and cognitive ability. An in-depth understanding of metabolic alterations in the brain associated with DM will facilitate our understanding of the pathogenesis of cognitive dysfunction. The present study used an culture of primary neurons in a high-glucose (HG) environment to investigate characteristic alterations in neuron metabolism using nuclear magnetic resonance (NMR)-based metabonomics.
View Article and Find Full Text PDF