Exercise-induced muscle injury is one of the most common types of sports injuries. Skeletal muscle troponin I (skTnI) serves as an ideal biomarker in assessing such injuries, facilitating timely detection and evaluation. In this study, we develop a fluorescent sandwich lateral flow immunoassay (LFIA) combined with a desktop analyzer for rapid detection of skTnI.
View Article and Find Full Text PDFAlthough isothermal nucleic acid amplification is advantageous in pathogen detection in resource-limited settings, an electricity-dependent heating module is often required. Here, we developed a wearable microfluidic device combined with recombinase polymerase amplification (RPA) for simple and rapid amplification of HIV-1 DNA using human body heat. The human body temperature at the human wrist varied from 33 to 34 °C in the ambient environment, which is sufficient to perform RPA reactions.
View Article and Find Full Text PDFBladder cancer (BC) is a common malignancy, and it accounts for one of the highest management costs among urogenital cancers. As a non-invasive method, urine cytology plays an important role in the detection of exfoliated tumor cells (ETCs) for early diagnosis of BC. However, urine cytology suffers from its low sensitivity and reliance on microscopic examination.
View Article and Find Full Text PDFCancer poses a great health threat to both developed and developing countries, and anti-cancer drugs are of important interest for improved clinical outcomes. Although tumor-on-a-chip technologies offer a feasible approach to screening drug toxicity, their capability to mimic the native tumor microenvironment (TME) is still limited. For better mimicry of the TME, we developed a biomimetic three-dimensional (3D) liver tumor-on-a-chip with the integration of essential components derived from decellularized liver matrix (DLM) with gelatin methacryloyl (GelMA) in a microfluidics-based 3D dynamic cell culture system.
View Article and Find Full Text PDFExtracellular vesicles (EVs), including exosomes and microvesicles, are present in a variety of bodily fluids, and the concentration of these sub-cellular vesicles and their associated biomarkers (proteins, nucleic acids, and lipids) can be used to aid clinical diagnosis. Although ultracentrifugation is commonly used for isolation of EVs, it is highly time-consuming, labor-intensive and instrument-dependent for both research laboratories and clinical settings. Here, we developed an integrated double-filtration microfluidic device that isolated and enriched EVs with a size range of 30-200 nm from urine, and subsequently quantified the EVs via a microchip ELISA.
View Article and Find Full Text PDFThree-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800 °C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated.
View Article and Find Full Text PDF