Fish Shellfish Immunol
December 2024
FK506-binding protein 5 (FKBP5), encoded by FKBP5 gene, has been reported as a scaffolding protein in various mammalian pathways related to immunity, inflammation, apoptosis and autophagy. However, the role of FKBP5 in lower vertebrates remains unknown. In this study, we identified zebrafish FKBP5 (DrFKBP5), an ortholog of mammalian FKBP5, which shows high homology with its counterpart in Anabarilius grahami based on amino acid alignment and phylogenetic analysis.
View Article and Find Full Text PDFBrief Bioinform
January 2024
Connections between circular RNAs (circRNAs) and microRNAs (miRNAs) assume a pivotal position in the onset, evolution, diagnosis and treatment of diseases and tumors. Selecting the most potential circRNA-related miRNAs and taking advantage of them as the biological markers or drug targets could be conducive to dealing with complex human diseases through preventive strategies, diagnostic procedures and therapeutic approaches. Compared to traditional biological experiments, leveraging computational models to integrate diverse biological data in order to infer potential associations proves to be a more efficient and cost-effective approach.
View Article and Find Full Text PDFAs the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2023
Spider silk is repeatedly stretched while performing biological functions. There is a close relationship between the shape change of the fibre materials and their mechanical properties. However, the effect of the deformation and interval time on the structure and tensile behaviour properties of spider silk after repeatedly stretching by given strain value has been rarely reported.
View Article and Find Full Text PDFHand dysfunctions in Parkinson's disease include rigidity, muscle weakness, and tremor, which can severely affect the patient's daily life. Herein, a multimodal sensor glove is developed for quantifying the severity of Parkinson's disease symptoms in patients' hands while assessing the hands' multifunctionality. Toward signal processing, various algorithms are used to quantify and analyze each signal: Exponentially Weighted Average algorithm and Kalman filter are used to filter out noise, normalization to process bending signals, K-Means Cluster Analysis to classify muscle strength grades, and Back Propagation Neural Network to identify and classify tremor signals with an accuracy of 95.
View Article and Find Full Text PDFThe trends exhibited by the parameters that describe the mechanical behaviour of major ampullate gland silk fibers spun by spiders is explored by performing a series of loading-unloading tests at increasing values of strain, and by the subsequent analysis of the true stress-true strain curves obtained from these cycles. The elastic modulus, yields stress, energy absorbed, and energy dissipated in each cycle are computed in order to evaluate the evolution of these mechanical parameters with this cyclic straining. The elastic modulus is observed to increase steadily under these loading conditions, while only a moderate variation is found in the yield stress.
View Article and Find Full Text PDFMicromachines (Basel)
November 2022
With a focus on disease prevention and health promotion, a reactive and disease-centric healthcare system is revolutionized to a point-of-care model by the application of wearable devices. The convenience and low cost made it possible for long-term monitoring of health problems in long-distance traveling such as flights. While most of the existing health monitoring systems on aircrafts are limited for pilots, point-of-care systems provide choices for passengers to enjoy healthcare at the same level.
View Article and Find Full Text PDFCarbon nanomaterials have proven their wide applicability in molecular separation and water purification techniques. Here, an unzipped carbon nanotubes (CNT) embedded graphene oxide (GO) membrane (uCNTm) is reported. The multiwalled CNTs were longitudinally cut into multilayer graphene oxide nanoribbons by a modified Hummer method.
View Article and Find Full Text PDFElectronic textiles (e-textiles), having the capability of interacting with the human body and surroundings, are changing our everyday life in fundamental and meaningful ways. Yet, the expansion of the field of e-textiles is still limited by the lack of stable and biocompatible power sources with aesthetic designs. Here, we report a rechargeable solid-state Zn/MnO fiber battery with stable cyclic performance exceeding 500 hours while maintaining 98.
View Article and Find Full Text PDFPolymers (Basel)
December 2020
In this paper, surface projection micron stereo-lithography technology (PμSL) by 3D printing was used to prepare two resin honeycomb materials with different levels, and the mechanical behavior of these materials was studied. The quasi-static compression experiment and the dynamic compression experiment were carried out on the samples using the in situ micro-compression testing machine and the Split Hopkinson bar (SHPB) experimental equipment. The stress-strain curves of these materials at different strain rates were obtained, and the energy absorption characteristic of materials with two different levels were analyzed.
View Article and Find Full Text PDFMaterials (Basel)
September 2020
Multi-cell hybrid micro-lattice materials, in which the stretching dominated octet cells were adopted as the strengthen phase while the bending dominated body centered cubic (BCC) lattice was chosen as the soft matrix, were proposed to achieve superior mechanical properties and energy absorption performance. Both stochastic and symmetric distribution of octet cells in the BCC lattice were considered. The cell assembly micromechanics finite element model (FEM) was built and validated by the experimental results.
View Article and Find Full Text PDFA structurally stable silicon allotrope is predicted by means of first principles calculations. This new structure is composed of a six-membered ring, a five-membered ring and a three-membered ring with the space group PA3[combining macron] and fvs topology, which is named fvs-Si48. The calculations of geometrical, vibrational, and electronic and optical properties reveal that fvs-Si48 has good mechanical stability with a mass density of 1.
View Article and Find Full Text PDF