Publications by authors named "Mengkui Cui"

Biologically derived and biologically inspired fibers with outstanding mechanical properties have found attractive technical applications across diverse fields. Despite recent advances, few fibers can simultaneously possess high-extensibility and self-recovery properties especially under wet conditions. Here, we report protein-based fibers made from recombinant scallop byssal proteins with outstanding extensibility and self-recovery properties.

View Article and Find Full Text PDF

Marine diatoms construct their hierarchically ordered, three-dimensional (3D) external structures called frustules through precise biomineralization processes. Recapitulating the remarkable architectures and functions of diatom frustules in artificial materials is a major challenge that has important technological implications for hierarchically ordered composites. Here, we report the construction of highly ordered, mineralized composites based on fabrication of complex self-supporting porous structures-made of genetically engineered amyloid fusion proteins and the natural polysaccharide chitin-and performing multiscale protein-mediated mineralization with diverse inorganic materials, including SiO, TiO and GaO.

View Article and Find Full Text PDF

Waterborne viruses frequently cause disease outbreaks and existing strategies to remove such viral pathogens often involve harsh or energy-consuming water treatment processes. Here, a simple, efficient, and environmentally friendly approach is reported to achieve highly selective disinfection of specific viruses with living engineered biofilm materials. As a proof-of-concept, biofilm matrix protein CsgA was initially genetically fused with the influenza-virus-binding peptide (C5).

View Article and Find Full Text PDF

Functional coating materials have found broad technological applications in diverse fields. Despite recent advances, few coating materials simultaneously achieve robustness and substrate independence while still retaining the capacity for genetically encodable functionalities. Here, we report biofilm-inspired protein nanofiber coatings that simultaneously exhibit substrate independence, resistance to organic solvents, and programmable functionalities.

View Article and Find Full Text PDF

Nanoscale objects feature very large surface-area-to-volume ratios and are now understood as powerful tools for catalysis, but their nature as nanomaterials brings challenges including toxicity and nanomaterial pollution. Immobilization is considered a feasible strategy for addressing these limitations. Here, as a proof-of-concept for the immobilization of nanoscale catalysts in the extracellular matrix of bacterial biofilms, we genetically engineered amyloid monomers of the curli nanofiber system that are secreted and can self-assemble and anchor nano-objects in a spatially precise manner.

View Article and Find Full Text PDF

The precise manipulation, localization, and assembly of biological and bioinspired molecules into organized structures have greatly promoted material science and bionanotechnology. Further technological innovation calls for new patternable soft materials with the long-sought qualities of environmental tolerance and functional flexibility. Here, we report a patterned amyloid material (PAM) platform for producing hierarchically ordered structures that integrate these material attributes.

View Article and Find Full Text PDF

Many biological materials form via liquid-liquid phase separation (LLPS), followed by maturation into a solid-like state. Here, using a biologically inspired assembly mechanism designed to recapitulate these sequential assemblies, we develop ultrastrong underwater adhesives made from engineered proteins containing mammalian low-complexity (LC) domains. We show that LC domain-mediated LLPS and maturation substantially promotes the wetting, adsorption, priming, and formation of dense, uniform amyloid nanofiber coatings on diverse surfaces (e.

View Article and Find Full Text PDF

Rechargeable batteries that combine high energy density with high power density are highly demanded. However, the wide utilization of lithium metal anode is limited by the uncontrollable dendrite growth, and the conventional lithium-ion batteries (LIBs) commonly suffer from low rate capability. Here, we for the first time develop a biofilm-coated separator for high-energy and high-power batteries.

View Article and Find Full Text PDF

Engineering functional amyloids through a modular genetic strategy represents new opportunities for creating multifunctional molecular materials with tailored structures and performance. Despite important advances, how fusion modules affect the self-assembly and functional properties of amyloids remains elusive. Here, using curli as a model system, we systematically studied the effect of flanking domains on the structures, assembly kinetics and functions of amyloids.

View Article and Find Full Text PDF

The physiological or pathological formation of fibrils often relies on molecular-scale nucleators that finely control the kinetics and structural features. However, mechanistic understanding of how protein nucleators mediate fibril formation in cells remains elusive. Here, we develop a CsgB-decorated DNA origami (CB-origami) to mimic protein nucleators in Escherichia coli biofilm that direct curli polymerization.

View Article and Find Full Text PDF

Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities.

View Article and Find Full Text PDF