ACS Appl Mater Interfaces
September 2023
The convergence of 3D bioprinting with powerful manufacturing capability and cellular self-organization that can reproduce intricate tissue microarchitecture and function is a promising direction toward building functional tissues and has yet to be demonstrated. Here, we develop a granular aggregate-prevascularized (GAP) bioink for engineering highly vascularized bone tissues by capitalizing on the condensate-mimicking, self-organization, and angiogenic properties of prevascularized mesenchymal spheroids. The GAP bioink utilizes prevascularized aggregates as building blocks, which are embedded densely in extracellular matrices conducive to spontaneous self-organization.
View Article and Find Full Text PDFThree-dimensional bioprinting has emerged as an appealing approach for creating functional tissues; however, a lack of suitable bioinks with high cell density and printability has greatly limited our ability to print functional tissues. We address this limitation by developing a granular cell aggregate-based biphasic (GCAB) bioink based on densely packed cell aggregates. The GCAB bioink exhibited the desired shear-thinning and shear-recovery properties for extrusion bioprinting and hyperelastic behaviors postprinting for modeling the mechanical characteristics of soft biological tissues.
View Article and Find Full Text PDFFood wastes can be hydrolyzed into soluble microbial substrates, contributing to sustainability. Halomonas spp.-based Next Generation Industrial Biotechnology (NGIB) allows open, unsterile fermentation, eliminating the need for sterilization to avoid the Maillard reaction that negatively affects cell growth.
View Article and Find Full Text PDFCreating functional tissues and organs in vitro on demand is a major goal in biofabrication, but the ability to replicate the external geometry of specific organs and their internal structures such as blood vessels simultaneously remains one of the greatest impediments. Here, this limitation is addressed by developing a generalizable bioprinting strategy of sequential printing in a reversible ink template (SPIRIT). It is demonstrated that this microgel-based biphasic (MB) bioink can be used as both an excellent bioink and a suspension medium that supports embedded 3D printing due to its shear-thinning and self-healing behavior.
View Article and Find Full Text PDFBacterial outer membrane (OM) is a self-protective and permeable barrier, while having many non-negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H.
View Article and Find Full Text PDF