Objectives: Porphyromonas gingivalis-LPS regulated bone metabolism by triggering dysfunction of osteoblasts directly, and affecting activity of osteoclasts through intracellular communication. Exosome, as the mediator of intercellular communication, was important vesicle to regulate osteogenesis and osteoclastogenesis. This research was designed for investigating the mechanism of BMSCs-EXO in modulating osteoclastic activity under the P.
View Article and Find Full Text PDFAcevaltrate is a natural product isolated from the roots of Valeriana glechomifolia F.G.Mey.
View Article and Find Full Text PDFUncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ) T cells and aggravating the progression of pulmonary hypertension.
View Article and Find Full Text PDFHighly oscillatory Volterra integral equations are frequently encountered in engineering applications. The Nyström-type method is an important numerical approach for solving such problems. However, there remains scope to further optimize and accelerate the Nyström method.
View Article and Find Full Text PDFBackground: Gingival papilla defects, which cause an unpleasant appearance and involve the upper anterior teeth, may be triggered by several factors. Several noninvasive and invasive techniques have been proposed for gingival papilla reconstruction. The combination of interproximal tunneling and customized connective tissue grafts (CTGs) has shown promise in papilla augmentation.
View Article and Find Full Text PDFSalivary exosomes contain various components and may play important roles in oral diseases. The purpose of this study was to verify the possible function of miR-223-3p from salivary exosomes in periodontitis. We isolated the salivary exosomes and found that the miR-223-3p content of salivary exosomes from periodontitis was less than the healthy control.
View Article and Find Full Text PDFPurpose: To explore the effects of eicosapentaenoic acid (EPA) on biological activity and inflammatory factor expression of human gingival fibroblasts (HGFs).
Methods: The effects of EPA on the activity, morphology and cell cycle of HGFs were observed by living and dead cell staining, immunofluorescence staining and flow cytometry, respectively. HGFs were stimulated by lipopolysaccharides (LPS) of Porphyromonas gingivalis (P.
Objective: The overall aim of this research was to investigate the differences in the expression of programmed death ligand 1 (PD-L1) in human gingival fibroblasts (HGFs) between a periodontal healthy group and a periodontal inflammatory group. and explore the possible mechanism involved.
Methods: Differences in PD-L1 mRNA and protein expression in HGFs from a periodontal healthy group and a periodontal inflammatory group were examined by qPCR and western blotting, respectively, and were further tested after lipopolysaccharide (LPS) stimulation in both groups.
The design of solid polymer electrolytes (SPE) with high ionic conductivity and excellent mechanical properties is challenging because these two properties are often conflicting. To achieve both, a reaction-controlled strategy is proposed based on the nanophase separation of an ionic transport pathway and a supporting matrix to balance ionic mobility and mechanical properties. Specifically, an elastic epoxy polymer electrolyte (eEPE), synthesized via two-step polymerization, combines outstanding mechanical strength (toughness of 3.
View Article and Find Full Text PDFCdS-InS heterojunction with enhanced photoelectrochemical (PEC) performance was synthesized to construct dual-mode visible light-induced biosensors for highly sensitive and selective detection of bleomycin (BLM). Due to improved absorption in the visible region and suppressed recombination of electron-hole pairs in the heterojunction, CdS-InS composite exhibited enhanced photocurrent response under visible light illumination. Using CdS-InS as photoactive materials and BLM-binding aptamer as recognition element, a PEC aptasensor displaying a declined photocurrent response to BLM was facilely constructed, which was linear to BLM concentration in the range of 5.
View Article and Find Full Text PDFGraphitic carbon nitride (C3N4) is a carbon-based metal-free semiconductor, which has been widely explored as a photoactive material. In this work, the CdS, reduced graphene oxide (rGO) and C3N4 (CdS-rGO-C3N4) composite was synthesized by a simple one-pot hydrothermal method and utilized to construct a photoelectrochemical (PEC) sensor. Compared with CdS, C3N4 and CdS-C3N4, the CdS-rGO-C3N4 composite exhibited enhanced photoelectrochemical (PEC) performance, due to the expanded absorption of C3N4 in the visible region by CdS and promoted the charge carrier separation of a photoelectrode by rGO.
View Article and Find Full Text PDFArch Oral Biol
April 2018
Background: In gingival tissues, lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) is the most critical stimulator for inducing inflammatory response. Human gingival fibroblasts (HGFs) are the major constituents of gingival connective tissues.
View Article and Find Full Text PDFThe aging periodontium may be vulnerable to periodontal pathogens and poor response to inflammation and susceptible to tumorigenesis. Human gingival fibroblasts (hGFs) through continuously replicative culture served as an in vitro surrogate for aging. To investigate the effects of the mechanistic target of rapamycin (mTOR) inhibition on the aging gingiva, we stimulated the high-passage hGFs with rapamycin (20 nmol/L) for 3 days and 30 days.
View Article and Find Full Text PDFThe aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F.
View Article and Find Full Text PDFUltrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway.
View Article and Find Full Text PDFPeriodontitis is a chronic inflammatory disease induced by bacteria. Exposure of the host to periodontal pathogens and their virulence factors induces a hyporesponsive state to subsequent challenge, which is termed endotoxin tolerance. In this experiment, we studied the cytokine production in THP-1 cells upon single or repeated Porphyromonas gingivalis (P.
View Article and Find Full Text PDFBackground: Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge.
View Article and Find Full Text PDF