Publications by authors named "Mengjuan Yang"

Introduction: EGFR-mutated NSCLC is characterized by an immunosuppressive microenvironment that confers limited clinical effectiveness to anti-PD-1 or PD-L1 antibodies. Despite the discouraging outcomes of immunotherapy, novel immune checkpoints are constantly emerging, among which the specific vulnerability for therapeutic intervention in the context of EGFR-mutated NSCLC remains unresolved.

Methods: Data sets of patient- and cell line-levels were used for screening and mutual validation of association between EGFR mutation and a panel of immune checkpoint-related genes.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum with an etiology that remains elusive. Traditional Chinese medicine (TCM) has been widely used on long-term UC treatment to better maintain the efficacy than traditional aminosalicylic acid or glucocorticosteroids and to ease financial burden of patients. Qingchang Wenzhong Decoction (QCWZD) is a modern TCM decoction with established clinical efficacy but the mechanism of its protection on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites (OIHPs) have been emerging as a hot research topic due to their potential applications in energy storage, semiconductors, and electronic devices. Herein, we systematically investigated the synthesis and phase transition behaviors of the enantiomeric OIHPs, () and ()-,-dimethyl-3-fluoropyrrolidinium cadmium bromide ([DMFP][CdBr]), and the hybrid trigonal structure [DMFP] (CdBr)(CdBr). The enantiomers have a mirror-symmetric structure and enhanced solid-state phase transition points of 417 and 443 K, in contrast to the nonfluorinated parent compound, ,-dimethyl-pyrrolidinium cadmium bromide ([DMP][CdBr], 385 K).

View Article and Find Full Text PDF

In this research work, a reusable and efficient 2D/1D heterogeneous structured photocatalyst based on amine-functionalized halloysite nanotubes (MHNTs) and BiWOnanosheet (BWO) was prepared using a facile hydrothermal method for decomposing PPCPs under simulated sunlight. On the degradation of tetracycline hydrochloride (TCH), the effects of composite catalysts prepared under various conditions were discussed. The results showed that over BWO/MHNTs with a mass ratio was 3:1, the synthesizing temperature was 120 °C and the precursor pH value was 1, the TCH (10 mg l) degradation efficiency reached 100% after 1 h irradiation of simulated sunlight.

View Article and Find Full Text PDF

Background: In the past decade, the field of tumour immunotherapy has made a great progress. However, the efficacy of immune checkpoint blocking (ICB) in the treatment of hepatocellular carcinoma (HCC) remains limited. Cytotoxic lymphocyte trafficking into tumours is critical for the success of ICB.

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskites (HOIPs) have emerged as multifunctional materials with remarkable optical and electronic properties. In particular, 2D-layered lead iodide-based HOIPs possess great practical application potential in the photoelectric field. In this work, we report H/F substitution-induced 1D-to-2D increment of lead iodide HOIPs.

View Article and Find Full Text PDF

Plastic ferroelectrics, featuring large entropy changes in phase transitions, hold great potential application for solid-state refrigeration due to the electrocaloric effect. Although conventional ceramic ferroelectrics (, BaTiO and KNbO) have been widely investigated in the fields of electrocaloric material and catalysis, organic plastic ferroelectrics with a high Curie point ( ) are rarely reported but are of great importance for the sake of environmental protection. Here, we reported an organic plastic ferroelectric, (-)-camphanic acid, which crystallizes in the 2 space group, chiral polar 2 (C) point group, at room temperature.

View Article and Find Full Text PDF

The brazing of Titanium alloy to Aluminum alloy is of great significance for lightweight application, but the stable surface oxide film limits it. In our work, the surface oxide film was removed by the ion bombardment, the deposited Cu layer by magnetron sputtering was selected as an interlayer, and then the contact reactive brazing of TC4 alloy to Al7075 alloy was realized. The microstructure and joining properties of TC4/Al7075 joints obtained under different parameters were observed and tested, respectively.

View Article and Find Full Text PDF

The optical control of polarization switching is attracting tremendous interest because photoirradiation stands out as a nondestructive, noncontact, and remote-control means beyond an electric or strain field. The current research mainly uses various photoexcited electronic effects to achieve the photocontrol polarization, such as a light-driven flexoelectric effect and a photovoltaic effect. However, since photochromism was discovered in 1867, the structural phase transition caused by photoisomerization has never been associated with ferroelectricity.

View Article and Find Full Text PDF

Crystalline materials have received extensive attention due to their extraordinary physical and chemical properties. Among them, phase transition materials have attracted great attention in the fields of photovoltaic, switchable dielectric devices, and ferroelectric memories, etc. However, many of them suffer from low phase transition temperatures, which limits their practical application.

View Article and Find Full Text PDF

Background: Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the population worldwide. Hyperproliferative keratinocytes were thought to be an amplifier of inflammatory response, thereby sustaining persistence of psoriasis lesions. Agents with the ability to inhibit keratinocyte proliferation or induce apoptosis are potentially useful for psoriasis treatment.

View Article and Find Full Text PDF

Through the strategy of F/H substitution, we precisely designed the highest-Tc (phase transition temperature) organic enantiomeric ferroelectrics, (R)- and (S)-(N,N-dimethyl-3-fluoropyrrolidinium) iodide, of which the Tc reaches up to 470 K, far beyond those of other enantiomeric ferroelectrics and also the commercial ferroelectric BaTiO3.

View Article and Find Full Text PDF

Chiral organic-inorganic perovskites (COIPs) have recently attracted increasing interest due to their unique inherent chirality and potential applications in next-generation optoelectronic and spintronic devices. However, COIP ferroelectrics are very sparse. In this work, for the first time, we present the nickel-nitrite ABX COIP ferroelectrics, [( and )--fluoromethyl-3-quinuclidinol]Ni(NO) ([( and )-FMQ]Ni(NO)), where the X-site is the rarely seen NO bridging ligand.

View Article and Find Full Text PDF

In this study, a novel hydroxyapatite/magnetite/zeolite (HAP/Fe3O4/Zeo) composite was prepared, characterized and used as an adsorbent to remove Congo red (CR) from aqueous solution. The adsorption characteristics of CR from aqueous solution on the HAP/Fe3O4/Zeo composite were investigated using batch experiments. Results showed that the HAP/Fe3O4/Zeo composite was effective for the removal of CR from aqueous solution.

View Article and Find Full Text PDF

Adding sorbents to sediments has been suggested as an effective technology for contaminated sediment remediation. In this study, a zirconium-modified zeolite (ZrMZ) was prepared, characterized, and used as a sediment amendment to control phosphorus (P) release from eutrophic lake sediments. The efficiency of ZrMZ in immobilizing P from water and sediments was investigated through a series of experiments.

View Article and Find Full Text PDF

Surfactant-modified activated carbon (SMAC) was prepared by loading cetylpyridinium chloride (CPC) onto activated carbon and used as adsorbents to remove nitrate from aqueous solution. The SMAC was effective for removing nitrate from aqueous solution. The SMAC exhibited much higher nitrate adsorption capacity than that of the unmodified activated carbon.

View Article and Find Full Text PDF