Publications by authors named "Mengjie Zheng"

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

The dual inhibition of histone lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) has emerged as a promising strategy for cancer therapy. In this study, we report the discovery of novel 5-cyano-3-phenylindole-based LSD1/HDAC dual inhibitors, evaluated through both in vitro and in vivo assays. Among these inhibitors, compound was identified as particularly potent, exhibiting high inhibitory activity against LSD1 (IC = 39.

View Article and Find Full Text PDF

Metasurface solar absorber serves as a kind of important component for green energy devices to convert solar electromagnetic waves into thermal energy. In this work, we design a new solar light absorber configuration that incorporates the titanium nitride substrate, aluminum oxide layer, titanium nitride layer, and the topmost refractory nanostructures. The metasurface absorber based on this configuration can achieve an average spectral absorption of over 91% and a total solar radiation absorption of 91.

View Article and Find Full Text PDF

In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population.

View Article and Find Full Text PDF

Reducing the silver film to 10 nm theoretically allows higher transparency but in practice leads to degraded transparency and electrical conductivity because the ultrathin film tends to be discontinuous. Herein, we developed a thinning-back process to address this dilemma, in which silver film is first deposited to a larger thickness with high continuity and then thinned back to a reduced thickness with an ultrasmooth surface, both implemented by a flood ion beam. Contributed by the shallow implantation of silver atoms into the substrate during deposition, the thinness of silver films down to 4.

View Article and Find Full Text PDF

β-(Hetero)arylethylamines are privileged structural motifs found in many high-value organic molecules, including pharmaceuticals and natural products. To construct these important molecular skeletons, previous methods are mainly achieved by amino(hetero)arylation reaction with the aid of transition metals and preactivated substrates. Herein, we report a metal-free and photoinduced intermolecular amino(hetero)arylation reaction for the single-step installation of both (hetero)aryl and iminyl groups across alkenes in an efficient and regioselective manner.

View Article and Find Full Text PDF

Active optical metasurfaces promise compact, lightweight, and energy-efficient optical systems with unprecedented performance. Chalcogenide phase-change material GeSbSeTe (GSST) has shown tremendous advantages in the design of mid-infrared active metasurfaces. However, most of the GSST-based active metasurfaces can only work efficiently within a narrow frequency range.

View Article and Find Full Text PDF

Seeking sensitive, large-scale, and low-cost substrates is highly important for practical applications of surface-enhanced Raman scattering (SERS) technology. Noble metallic plasmonic nanostructures with dense hot spots are considered an effective construction to enable sensitive, uniform, and stable SERS performance and thus have attracted wide attention in recent years. In this work, we reported a simple fabrication method to achieve wafer-scale ultradense tilted and staggered plasmonic metallic nanopillars filled with numerous nanogaps (hot spots).

View Article and Find Full Text PDF

The suspended metallic nanostructures with tiny gaps have certain advantages in surface-enhanced Raman scattering (SERS) due to the coaction of the tiny metallic nanogaps and the substrate-decoupled electromagnetism resonant modes. In this study, we used the lithographic HSQ/PMMA electron-beam bilayer resist exposure combined with a deposition-induced nanogap-narrowing process to define elevated suspended metallic nanodimers with tiny gaps for surface-enhanced Raman spectroscopy detection. By adjusting the deposited metal thickness, the metallic dimers with sub-10 nm gaps can be reliably obtained.

View Article and Find Full Text PDF

Lightweight, miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration, industrial vision, consumer electronics, and medical imaging. However, conventional optical techniques are intricate to downscale as refractive lenses mostly rely on phase accumulation. Metalens, composed of subwavelength nanostructures that locally control light waves, offers a disruptive path for small-scale imaging systems.

View Article and Find Full Text PDF

Thiolated/selenolated amino acids are irreplaceable despite their rare abundance in proteins. They play critical roles in regulating the conformation and function of proteins and peptide design as well as bioconjugation. Furthermore, β-thiolated/selenolated amino acids are important motifs in native chemical ligation-dechalcogenation strategy for protein synthesis.

View Article and Find Full Text PDF

Background: Feline calicivirus (FCV) is a common pathogen of felids, and FCV vaccination is regularly practiced. The genetic variability and antigenic diversity of FCV hinder the effective control and prevention of infection by vaccination. Improved knowledge of the epidemiological characteristics of FCV should assist in the development of more effective vaccines.

View Article and Find Full Text PDF

Surface plasmons in metals promise many fascinating properties and applications in optics, sensing, photonics and nonlinear fields. Plasmonic nanostructures with extremely small features especially demonstrate amazing new effects as the feature sizes scale down to the sub-nanometer scale, such as quantum size effects, quantum tunneling, spill-out of electrons and nonlocal states The unusual physical, optical and photo-electronic properties observed in metallic structures with extreme feature sizes enable their unique applications in electromagnetic field focusing, spectra enhancing, imaging, quantum photonics, In this review, we focus on the new effects, fabrication and applications of plasmonic metal nanostructures with extremely small features. For simplicity and consistency, we will focus our topic on the plasmonic metal nanostructures with feature sizes of sub-nanometers.

View Article and Find Full Text PDF

Ultrasmall metallic nanogaps are of great significance for wide applications in various nanodevices. However, it is challenging to fabricate ultrasmall metallic nanogaps by using common lithographic methods due to the limited resolution. In this work, we establish an effective approach for successful formation of ultrasmall metallic nanogaps based on the spontaneous nanoscale dewetting effect during metal deposition.

View Article and Find Full Text PDF

INF39 is a nontoxic, irreversible, acrylate-based NLRP3 inhibitor and a further optimization of ethyl 2-((2-chlorophenyl) hydroxyl) methyl) acrylate (INF4E). However, the detail mechanism and the direct target of its anti-inflammatory activity is not clear. Here, we show that INF39 is a specific inhibitor for NLRP3 inflammasome activation.

View Article and Find Full Text PDF

The field confinement of plasmonic systems enables spectral tunability under structural variations or environmental perturbations, which is the principle for various applications including nanorulers, sensors, and color displays. Here, we propose and demonstrate that materials with anomalous dispersion, such as Ge in the visible, improve spectral tunability. We introduce our proposal with a semianalytical guided mode picture.

View Article and Find Full Text PDF

Sulfur and selenium occupy a distinguished position in biology owing to their redox activities, high nucleophilicity, and acyl transfer capabilities. Thiolated/selenolated amino acids, including cysteine, selenocysteine, and their derivatives, play critical roles in regulating the conformation and function of proteins and serve as an important motif for peptide design and bioconjugation. Unfortunately, a general and concise method to attain enantiopure β-thiolated/selenolated amino acids remains an unsolved problem.

View Article and Find Full Text PDF

As indicators of diseases, blood biochemical values play a crucial role in clinical practice and assessments of animals' health condition. The rising population of homing pigeons in China has prompted needs for reliable blood biochemical reference intervals. Therefore, the aim of this study was to establish biochemical reference intervals for homing pigeons.

View Article and Find Full Text PDF

Sub-wavelength aperture arrays featuring small gaps have an extraordinary significance in enhancing the interactions of terahertz (THz) waves with matters. But it is difficult to obtain large light-substance interaction enhancement and high optical response signal detection capabilities at the same time. Here, we propose a simple terahertz bow-tie aperture arrays structure with a large electric field enhancement factor and high transmittance at the same time.

View Article and Find Full Text PDF

Ginsenoside Rg3 is one of the main constituents of Panax ginseng. Compelling evidence has demonstrated that ginsenoside Rg3 is capable of inhibiting inflammation. However, the mechanism mediating its anti-inflammatory effects remain unclear.

View Article and Find Full Text PDF

The macroscopic electromagnetic boundary conditions, which have been established for over a century, are essential for the understanding of photonics at macroscopic length scales. Even state-of-the-art nanoplasmonic studies, exemplars of extremely interface-localized fields, rely on their validity. This classical description, however, neglects the intrinsic electronic length scales (of the order of ångström) associated with interfaces, leading to considerable discrepancies between classical predictions and experimental observations in systems with deeply nanoscale feature sizes, which are typically evident below about 10 to 20 nanometres.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving the fabrication of metallic patterns needed for electronic and optical devices through a more efficient method inspired by the kirigami art of paper cutting.
  • This new process uses electron-beam patterning to create nanotrench contours in metallic films, allowing for reduced exposure time while achieving higher geometric precision compared to traditional methods.
  • The successful implementation of this technique enables the reliable creation of multiscale metallic structures, ranging from sub-10-nm to submillimeter features, opening doors for innovative applications like anti-counterfeiting and enhanced spectroscopy.
View Article and Find Full Text PDF