Articular cartilage and subchondral bone defects have always been problematic because the osteochondral tissue plays a crucial role in the movement of the body and does not recover spontaneously. Here, an injectable hydrogel composed of oxidized sodium alginate/gelatin/chondroitin sulfate (OSAGC) was designed for the minimally invasive treatment and promotion of osteochondral regeneration. The OSAGC hydrogel had a double network based on dynamic covalent bonds, demonstrating commendable injectability and self-healing properties.
View Article and Find Full Text PDFMicrocarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli.
View Article and Find Full Text PDFIrregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared.
View Article and Find Full Text PDFNatural polymers and minerals can be combined to simulate natural bone for repairing bone defects. However, bone defects are often irregular and pose challenges for their repair. To overcome these challenges, we prepared Chitosan/Polydopamine/Octacalcium phosphate (CS/PDA/OCP) microcarriers that mimic bone composition and micro-size to adapt to different bone defect defects.
View Article and Find Full Text PDFElectret materials have attracted extensive attention because of their permanent polarization and electrostatic effect. However, it is one of problem that needs to be solved in biological application to manipulate the change of surface charge of electret by external stimulation. In this work, a drug-loaded electret with flexibility and no cytotoxicity was prepared under relatively mild conditions.
View Article and Find Full Text PDFBacterial cellulose (BC) has good network structure, biocompatibility, and excellent mechanical properties, and is widely used in the field of biomaterials. The controllable degradation of BC can further broaden its application. Oxidative modification and cellulases may endow BC with degradability, but these methods inevitably lead to the obvious reduction of its initial mechanical properties and uncontrolled degradation.
View Article and Find Full Text PDFMagnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through polymerization of dopamine with FeO (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility.
View Article and Find Full Text PDFThe mulberry tree () has been cultivated in China for thousands of years. Mulberry Diels-Alder-type adducts (MDAAs) are characteristic constituents of the genus Morus. The unique structure and diverse bioactivities of MDAAs have attracted the attention of researchers.
View Article and Find Full Text PDFInadequate lymphangiogenesis is closely related to the occurrence of many kinds of diseases, and one of the important treatments is to promote lymphangiogenesis. Kuoxin Decoction (KXF) is an herbal formula from traditional Chinese medicine used to treat dilated cardiomyopathy (DCM), which is associated with lymphangiogenesis deficiency. In this study, we comprehensively verified whether KXF promotes lymphangiogenesis in zebrafish and based on network analysis.
View Article and Find Full Text PDFEpimedokoreanin B (EKB) is a prenylated flavonoid isolated from Epimedium koreanum. In this article, we described the anti-cancerous effects of EKB and its underlying mechanism in human non-small cell lung cancer (NSCLC) A549 and NCI-H292 cells. EKB treatment inhibited cell proliferation and migration accompanied by cytoplasmic vacuolation in both cell lines.
View Article and Find Full Text PDFHuangqi Guizhi Wuwu Decoction (HGWD) is a traditional and effective Chinese medicine compound decoction for the treatment of rheumatoid arthritis (RA). However, there is few research on the treatment of rheumatoid cardiopulmonary complications. The present study was to study whether HGWD can alleviate the pathological changes caused by rheumatoid arthritis and cardiopulmonary complications.
View Article and Find Full Text PDFSoybean protein, as a safe and low-cost alternative to animal protein, attracts increasing attention in wound healing. In the present study, beta-conglycinin (7S) and glycinin (11S) with high solubility were obtained through separation of soybean protein. Afterward, 7S or 11S modified bacterial cellulose (BC) composites were produced by self-assembly method.
View Article and Find Full Text PDFBiocompatible and electroactive biomaterials have good potential on peripheral nerve repair. Bacterial cellulose (BC) shows excellent biocompatibility and is easy to modified, however it lacks electroactivity. In this study, biocompatible, conductive, and transparent bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers (BC/PEDOT-SNFs, BPS) composite membranes were prepared through the in-situ polymerization of PEDOT and the doping of SNFs.
View Article and Find Full Text PDFCell transplantation is an effective strategy to improve the repair effect of nerve guide conduits (NGCs). However, problems such as low loading efficiency and cell anoikis undermine the outcomes. Microcarriers are efficient 3D cell culture scaffolds, which can also prevent cell anoikis by providing substrate for adhesion during transplantation.
View Article and Find Full Text PDFThe aim of this study was to investigate the characteristics of the Fingered citron extract (FCE) microcapsules powders with different formulations of the encapsulation carrier agents [gum arabic (GA), maltodextrin (MD), modified starch (MS), and whey protein (WP)], which are obtained through spray drying. Encapsulation yield, encapsulation efficiency, moisture content, hygroscopicity, water activity, density properties, Carr's index, cohesiveness, flowability, porosity, wettability, solubility, color, particle size, thermal behavior, relative crystallinity, and micrographs were analyzed. Moreover, chemical structure of the microcapsule powder was identified using Fourier transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFIn this study, the crude polysaccharide from argun palm (Medemia argun) fruit was extracted with hot water and deproteinized by four different methods. Its structure characterization, thermal property and antioxidant activity were investigated by FT-IR spectroscopy, Scanning electron microscope, Congo-red, I-KI, DPPH assay, ABTS assay, TGA and DSC analysis. It indicated that the NaCl method was the best method in deproteinization.
View Article and Find Full Text PDFAs the most common type of tumour in brain, glioma has a high rate of morbidity and mortality and easily penetrates the surrounding normal brain parenchyma. The immunosuppressive microenvironment, which is similar to that in other neoplasms, is believed to participate in the tumorigenesis of glioma. Thus, many experts are seeking to exploit microenvironment as a therapeutic target.
View Article and Find Full Text PDFHypoxia is common in Glioblastoma (GBM). By regulating the 'hypoxia signaling cascade', hypoxia affects several processes including cell proliferation, invasion, and angiogenesis. Some studies have revealed that signal transducer and activator of transcription (STAT), including STAT1, is abnormal under hypoxia in several cancers.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2018
A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4×10a.
View Article and Find Full Text PDF