Objectives: Seeking a noninvasive predictor for BRAF V600E mutation status of pleomorphic xanthoastrocytomas (PXAs) is essential for their prognoses and therapeutic use of BRAF inhibitors. We aimed to noninvasively diagnose BRAF V600E-mutated PXAs using MRI morphologic, DWI and clinical parameters.
Methods: The clinical findings, anatomical MRI characteristics, and diffusion parameters of 36 pathologically confirmed PXAs were retrospectively analyzed, and BRAF V600E-mutated (n = 16) and wild-type (n = 20) groups were compared.
Background: To identify reliable magnetic resonance imaging (MRI) features that can differentiate confluent fibrosis (CF) from infiltrative hepatocellular carcinoma (HCC).
Methods: A retrospective analysis was conducted on Twenty CF patients and 28 infiltrative HCC patients who underwent upper abdomen MRI scans. The imaging features of lesions were analyzed, and the apparent diffusion coefficient (ADC) of lesions were measured.
Current literature emphasizes surgical complexities and customized resection for managing insular gliomas; however, radiogenomic investigations into prognostic radiomic traits remain limited. We aimed to develop and validate a radiomic model using multiparametric magnetic resonance imaging (MRI) for prognostic prediction and to reveal the underlying biological mechanisms. Radiomic features from preoperative MRI were utilized to develop and validate a radiomic risk signature (RRS) for insular gliomas, validated through paired MRI and RNA-seq data (N = 39), to identify core pathways underlying the RRS and individual prognostic radiomic features.
View Article and Find Full Text PDFIn this work, a high-performance molecularly imprinted polymer (MIP) sensor for the determination of β-lactoglobulin (β-LG) was fabricated by using trypsin as a template removal reagent. Gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) designed for electrode modification accelerate the heterogeneous electron transfer rate to enhance the sensitivity of the prepared sensor. With enzymatic hydrolysis, β-LG templates were effectively digested into short peptides without damage to the MIP so that the imprinted cavities of the MIP were preserved with a complete spatial structure exhibiting high selectivity.
View Article and Find Full Text PDFBecause of the multi-pathway antibacterial mechanisms of nanomaterials, they have received widespread attention in wound therapy. However, owing to the complexities of bacterial responses toward nanomaterials, antibacterial molecular mechanisms remain unclear, making it difficult to rationally design highly efficient antibacterial nanomaterials. Fortunately, molecular dynamics simulations and omics techniques have been used as effective methods to further investigate the action targets of nanomaterials.
View Article and Find Full Text PDFBackground: Natural bioactive substances have been widely studied for their superior anti-tumor activity and low toxicity. However, natural bioactive substances suffer from poor water-solubility and poor stability in the physiological environment. Therefore, to overcome the drawbacks of natural bioactive substances in tumor therapy, there is an urgent need for an ideal nanocarrier to achieve high bioactive substance loading with low toxicity.
View Article and Find Full Text PDF