Publications by authors named "Mengjia Xia"

Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe ) and black phosphorus (BP) is reported.

View Article and Find Full Text PDF

Conventional artificial intelligence (AI) machine vision technology, based on the von Neumann architecture, uses separate sensing, computing, and storage units to process huge amounts of vision data generated in sensory terminals. The frequent movement of redundant data between sensors, processors and memory, however, results in high-power consumption and latency. A more efficient approach is to offload some of the memory and computational tasks to sensor elements that can perceive and process the optical signal simultaneously.

View Article and Find Full Text PDF

Two-dimensional (2D) bismuth oxyselenide (BiOSe) has attracted increasing attention due to its high mobility, tunable band gap, and air stability. The surface reconstruction of cleaved BiOSe due to the electrostatic interlayer interactions can lead to the in-plane anisotropic structure and physics. In this work, we first discovered the strong anisotropy in phonon modes through the angle-resolved polarized Raman (ARPR) spectra.

View Article and Find Full Text PDF

In-plane anisotropic two-dimensional (2D) materials offer great opportunities for developing novel polarization sensitive photodetectors without being in conjunction with filters and polarizers. However, owing to low linear dichroism ratio and insufficient optical absorption of the few layer 2D materials, the comprehensive performance of the present polarization sensitive photodetectors based on 2D materials is still lower than the practical application requirements. In this work, after systematic investigation of the structural, vibrational, and optical anisotropies of layer-structured Te nanosheets, a novel polarization-sensitive self-powered imaging photodetector with high comprehensive performance based on a p-Te/n-MoSe van der Waals heterojunction (vdWH) with strong interlayer transition is proposed.

View Article and Find Full Text PDF