Background: Autophagic and endosomal pathways coordinately contribute to HBV virions and subviral particles (SVPs) production. To date, limited evidence supports that HBV and exosomes have a common pathway for their biogenesis and secretion. The final steps of HBV production and release have not yet been well studied.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group).
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
December 2024
The persistent global burden of hepatitis B virus (HBV) infection has prompted ongoing investigations into host determinants of viral control. In this study, we investigate the regulatory influence of the host gene cleavage stimulation factor subunit 2 (CSTF2) on HBV replication dynamics. We demonstrate differential CSTF2 expression across the spectrum of HBV infection phases, with upregulated expression noted during the immune-reactive and inactive carrier states compared with the immune-tolerant phase.
View Article and Find Full Text PDFBackground: The pivotal role of antibody-producing B cells in controlling hepatitis B virus (HBV) infection is well-established. However, the antiviral role of B cells extends beyond antibody production, which has been insufficiently studied for HBV infection.
Methods: Using an HBV hydrodynamic injection (HDI) mouse model with B cell depletion or functional blockade, we detected HBV infection markers and assessed T cell function through enzyme-linked immunosorbent assay, RT-PCR and flow cytometry.
The mechanisms underlying the natural control of hepatitis B virus (HBV) infection have long been an intriguing question. Given the wide physiological range of liver stiffness and the growing attention to the role of mechanical microenvironment in homeostasis and diseases, we investigated how physical matrix cues impact HBV replication. High matrix stiffness significantly inhibited HBV replication and activated YAP in primary hepatocyte culture system, a key molecule in mechanosignaling.
View Article and Find Full Text PDFFunctional cure for chronic hepatitis B (CHB) remains challenging due to the lack of direct intervention methods for hepatic inflammation. Multi-omics research offers a promising approach to understand hepatic inflammation mechanisms in CHB. A Bayesian linear model linked gene expression with clinical parameters, and population-specific expression analysis (PSEA) refined bulk gene expression into specific cell types across different clinical phases.
View Article and Find Full Text PDFTuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences.
View Article and Find Full Text PDFThe antiviral activity of interferon gamma (IFNγ) against hepatitis B virus (HBV) was demonstrated both in vivo and in vitro in a previous study. IFNγ can suppress HBV replication by accelerating the decay of replication-competent nucleocapsids of HBV. However, in this study, we found that the direct application of the mouse IFNγ (mIFNγ) expression plasmid to the liver of an HBV hydrodynamic injection (HI) mouse model led to the persistence of HBV, as indicated by sustained HBsAg and HBeAg levels in the serum as well as an increased percentage of the HBsAg positive mice, whereas the level of HBV DNA in the serum and the expression of HBcAg in the liver were inhibited at the early stage after HI.
View Article and Find Full Text PDFBackground & Aims: Hepatitis B surface antigen (HBsAg) drives hepatocarcinogenesis. Factors and mechanisms involved in this progression remain poorly defined, hindering the development of effective therapeutic strategies. Therefore, the mechanisms involved in the HBsAg-induced transformation of normal liver into hepatocellular carcinoma (HCC) were investigated.
View Article and Find Full Text PDFHepatitis B virus (HBV) produces and releases various particle types, including complete virions, subviral particles with envelope proteins, and naked capsids. Recent studies demonstrate that HBV exploits distinct intracellular membrane trafficking pathways, including the endosomal vesicle trafficking and autophagy pathway, to assemble and release viral and subviral particles. Herein, we summarize the findings about the distinct roles of autophagy and endosomal membrane trafficking and the interaction of both pathways in HBV replication, assembly, and release.
View Article and Find Full Text PDFHepatitis B virus (HBV)-transgenic mice exhibit competent innate immunity and are therefore an ideal model for considering intrinsic or cell-based mechanisms in HBV pathophysiology. A highly replicative model that has been little used, let alone characterized, is the Tg1.4HBV-s-rec strain derived from cross breeding of HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1-HBV]Bri44) or lack (Tg1.
View Article and Find Full Text PDFDevelopment of new anti-hepatitis B virus (HBV) drugs that target viral capsid assembly is a very active research field. We identify a novel phthalazinone derivative, compound 5832, as a potent HBV inhibitor. In this study, we intend to elaborate the antiviral effect and mechanism of 5832 against HBV in vitro and in vivo.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused millions of COVID-19 cases and deaths worldwide. Severity of pulmonary pathologies and poor prognosis were reported to be associated with the activation non-virus-specific bystander T cells. In addition, high concentrations of the macrophage migration inhibitory factor (MIF) were found in serum of COVID-19 patients.
View Article and Find Full Text PDFThe potency of interferon (IFN)α to restrict viruses was already discovered in 1957. However, until today, only IFNα2 out of the 12 distinct human IFNα subtypes has been therapeutically used against chronic viral infections. There is convincing evidence that other IFNα subtypes are far more efficient than IFNα2 against many viruses.
View Article and Find Full Text PDFDue to the limited host range of HBV, research progress has been hindered by the absence of a suitable animal model. The natural history of woodchuck hepatitis virus (WHV) infection in woodchuck closely mirrors that of HBV infection in human, making this species a promising candidate for establishing both in vivo and in vitro HBV infection models. Therefore, this animal may be a valuable species to evaluate HBV vaccines and anti-HBV drugs.
View Article and Find Full Text PDFChronic hepatitis B virus (HBV) infection remains one of the major global public health concerns, and it develop into liver fibrosis, cirrhosis, and hepatocellular carcinoma. Recent evidence suggests that endosomal and autophagic vesicles are beneficial for HBV replication. However, it has not been well elucidated how HBV exploits such intracellular vesicle systems for its replication.
View Article and Find Full Text PDFMAVS is an adapter protein involved in RIG-I-like receptor (RLR) signaling in mitochondria, peroxisomes, and mitochondria-associated ER membranes (MAMs). However, the role of MAVS in glucose metabolism and RLR signaling cross-regulation and how these signaling pathways are coordinated among these organelles have not been defined. This study reports that RLR action drives a switch from glycolysis to the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) through MAVS.
View Article and Find Full Text PDFA key question in the coronavirus disease 2019 (COVID-19) pandemic is the duration of specific T cell responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) post primary infection, which is difficult to address due to the large-scale COVID-19 vaccination and re-exposure to the virus. Here, we conducted an analysis of the long-term SARS-CoV-2-specific T cell responses in a unique cohort of convalescent individuals (CIs) that were among the first to be infected worldwide and without any possible antigen re-exposure since then. The magnitude and breadth of SARS-CoV-2-specific T cell responses correlated inversely with the time that had elapsed from disease onset and the age of those CIs.
View Article and Find Full Text PDFBackground And Aims: Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) development and progression. The aim of this study was to mechanistically investigate the involvement of Hippo signalling in HBV surface antigen (HBsAg)-dependent neoplastic transformation.
Methods: Liver tissue and hepatocytes from HBsAg-transgenic mice were examined for the Hippo cascade and proliferative events.
Immunopathology in hepatitis B virus (HBV) infection is driven by innate and adaptive immunity. Whether the hepatitis B surface antigen (HBsAg) affects hepatic antiviral signalling was investigated in HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1HBV]Bri44), lack (Tg1.4HBV-s-mut3) or secrete (Tg1.
View Article and Find Full Text PDFHepatitis B Virus (HBV) replication has been reported to be restricted by the intrahepatic host restriction factors and antiviral signaling pathways. The intracellular mechanisms underlying the significant viremia difference among different phases of the natural history chronic HBV infection remain elusive. We herein report that the hypoxia-induced gene domain protein-1a (HIGD1A) was highly expressed in the liver of inactive HBV carriers with low viremia.
View Article and Find Full Text PDFPhosphatidylinositol lipids play vital roles in lipid signal transduction, membrane recognition, vesicle transport, and viral replication. Previous studies have revealed that SAC1-like phosphatidylinositol phosphatase (SACM1L/SAC1), which uses phosphatidylinositol-4-phosphate (PI4P) as its substrate, greatly affects the replication of certain bacteria and viruses in vitro. However, it remains unclear whether and how SAC1 modulates hepatitis B virus (HBV) replication in vitro and in vivo.
View Article and Find Full Text PDF