Publications by authors named "Menghua Qin"

Broadband circularly polarized films display promising applications for multiwavelength lasers and "smart" windows in buildings. Herein, broadband films are fabricated through the heterogeneous assembly of cellulose nanocrystals (CNCs) and thermoplastic polyurethane (TPU) particles in mixed solvents of water and DMF. During the heterogeneous assembly process, a portion of the small TPU particles coassembled with CNCs to form chiral nematic structures and another portion of the TPU particles fused together to form large aggregates.

View Article and Find Full Text PDF

In recent years, researchers have put much attention on the improvements and upgrades of novel wet strength agent in the papermaking fields, especially in the usage of household paper. Herein, PEI-KH560 by polyethyleneimine (PEI) and γ-glycidyl ether propyl trimethoxysilane (KH560) was synthesized with five molecular weights (Mw) of PEI at 600, 1800, 10,000, 70,000 and 750,000. Results showed that the molecular weight greatly influenced the physicochemical properties of PEI-KH560, such as the size and thermal stability.

View Article and Find Full Text PDF

In this study, the base film (CSL) was prepared by blending tunicate cellulose nanocrystals (TCNCs) extracted from tunicate shells, with sodium alginate (SA) and alkali lignin (AL). Then, the mulching film (CSL-WK) was prepared using water-borne polyurethane (WPU) as binder to install low-energy Kaolin on the surface of CSL film. The influences of composition with different concentrations on mechanical properties were studied.

View Article and Find Full Text PDF

A practical method for the preparation of lignin derivatives-light-colored bio-based particles (LC-BP) via the modification of hexamethylene diisocyanate (HDI) is presented in this work. In the mixed EtOH/HO system, the change of solvent polarity induced the self-assembly of the lignosulfonate (LS) with the hydrophobic chromophores encapsulated inside the particles. The color of LS was reduced by the polymerization between the isocyanate groups (-N=C=O) of HDI and hydroxy groups of LS.

View Article and Find Full Text PDF

Cellulose nanocrystal (CNC) hybrid materials with numerous optical states have great potential as anti-counterfeiting labels and information encryption materials. However, it is challenging to construct multicolor emitting materials with tunable behaviors, which can dramatically enhance anti-counterfeiting abilities. Here, free-standing composite films with vivid multi-structural colors and dual-emitting fluorescence are successfully fabricated through a host-guest coassembly strategy.

View Article and Find Full Text PDF

Biomass pretreatment is an essential strategy to overcome biomass recalcitrance and promote lignocellulosic bioconversion. Here, a reusable organic solvent system (formic acid-methanesulfonic acid) was explored to pretreat poplar under a mild temperature (below 100 °C). The results showed that the co-solvent system could extract basically complete hemicelluloses and part of lignin with original cellulose retained in the pretreated substrates.

View Article and Find Full Text PDF

In this study, a heat-resistant and high-wettability lithium-ion batteries separator (PI-CPM-PI) composed of cellulose nanofibers (CNF) and aramid fibers (PMIA chopped fiber/PPTA pulp) with the reinforced concrete structure was fabricated via a traditional heterogeneous paper-making process. CNF played crucial roles in optimizing the pore structure and improving the wettability of PI-CPM-PI separator. The effects of composition on separator properties were investigated and the results indicated that the optimal compositions were 0.

View Article and Find Full Text PDF
Article Synopsis
  • Solar desalination devices harnessing solar energy offer a promising solution to global water scarcity by using seawater.
  • A bilayered solar evaporator was developed using paper forming techniques, incorporating cellulose fibers with FeO nanoparticles for efficient light absorption, and a cellulose fiber base for water transport.
  • This novel evaporator achieved an impressive evaporation rate of ~1.22 kg m² h under sunlight, outperforming traditional materials, making it a potential candidate for effective desalination in practical scenarios.
View Article and Find Full Text PDF

This work aimed to construct a polysaccharide-based mulch film with good performance for replacing plastic mulch by coating the glutaraldehyde crosslinking chitosan and humic acid/urea complexes (GCS) into cellulose/humic acid (HA/CE) film. By flow-coating with GCS to construct hierarchical networks, GCS-HA/CE film is endowed with the improved property. The influences of composition with different concentrations on mechanical properties were studied, and the optimum concentration was determined.

View Article and Find Full Text PDF

In view of the deficiencies in the preparation of cellulose gels, such as, cumbersome process, harsh conditions, high consumption of chemicals, secondary pollution caused by side reactions, this work reports a facile approach to make cellulose/multi-walled carbon nanotube (MWCNTs) hydrogels and aerogels via mixing cellulose with N,N'-methylene bisacrylamide (MBA) and MWCNTs in NaOH/urea/HO aqueous solution. The gels were revealed to be formed by an addition reaction between the double bonds of MBA and the hydroxyl groups of cellulose and the intermolecular interactions between cellulose and MWCNTs. The preparation process can be realized at room temperature and atmospheric pressure without the intervention of ultrasonic dispersion, catalyst and initiator.

View Article and Find Full Text PDF

Chiral nematic papers (CNPs) with mesopores structure based on cellulose nanocrystals (CNCs) were fabricated successfully via a swelling and freeze-drying method. The order of the original chiral nematic cellulose nanocrystals film was preserved in CNPs, which was proved by scanning electron microscopy (SEM), polarized optical microscopy (POM) measurements and circular dichroism (CD) spectra. The CNPs exhibited excellent optical responsive properties to different solvents.

View Article and Find Full Text PDF

Thehighly efficient utilization of lignin is of great importance for the development of the biorefinery industry. Herein, a novel "core-shell" lignin nanoparticle (LNP) with a diameter of around 135 nm was prepared, after the lignin was isolated from the effluent of formic acid fractionation via dialysis. In an attempt to endow composite materials with vital functionalities, the LNP was added to the starch film and the starch/polyvinyl alcohol (PVA) or starch/polyethylene oxide (PEO) composite film.

View Article and Find Full Text PDF

During the traditional autohydrolysis, formation and deposition of "pseudo-lignin" and lignin droplets on the surface of biomass had a detrimental effect on the subsequent biomass conversion. In this study, isothermal phase separation was introduced into autohydrolysis, and the effects of isothermal phase separation on the dissolution of components and enzymatic hydrolysis of bamboo were studied. The research showed that isothermal phase separation after autohydrolysis without cooling had an effective reduction in the deposition of "pseudo-lignin" and lignin droplets on the residues surface.

View Article and Find Full Text PDF

Biografting is a promising and ecofriendly approach to meet various application requirements of products. Herein, a popular green enzyme, laccase, was adopted to graft a hydrophobic phenolic compound (lauryl gallate, LG) onto chitosan (CTS). The resultant chitosan derivate (Lac/LG-CTS) was systematically analyzed by Fourier transform infrared (FTIR), grafting efficiency, scanning probe microscopy (SPM), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Integrated fractionation process based on autohydrolysis (H) and subsequent formic acid delignification (FAD) has been considered as an effective strategy to separate the main lignocellulosic components in view of the biorefinery. For the better understanding of the structural changes of the lignin during the integrated process, the fractionated aspen lignins were thoroughly characterized by Fourier transform infrared (FT IR), C, two-dimensional heteronuclear single quantum coherence (2D-HSQC) and P nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Compared to the milled wood lignin (MWL), the fractionated lignins had higher amounts of phenolic OH groups as due to the cleavage of β-O-4 linkages and less alcoholic OH groups mainly due to the esterification of the aliphatic OH groups by formic acid.

View Article and Find Full Text PDF

The removal of lignin is important to the recovery of saccharides from the pre-hydrolysis liquor (PHL) in kraft-based dissolved pulp production. A one-step process for lignin removal from PHL via treatment with horseradish peroxidase (HRP) in the presence of Ca was proposed, and its principle was studied. The results demonstrated synergy between HRP and Ca in lignin removal from PHL, whereas NH had little effect on lignin removal.

View Article and Find Full Text PDF

Artificial antioxidants are synthesized from fossil sources and are now widely used in the polymer, food, and cosmetics industries. The gradual depletion of fossil resources makes it practically significant and necessary to produce green antioxidants from renewable lignocellulosic resources. Herein, short-time hydrothermal (STH) treatment was developed for production of lignin-derived polyphenol antioxidants (LPAs) from poplar wood under conditions of high temperature and high pressure.

View Article and Find Full Text PDF

A type of cellulose solvent, i.e., aqueous N-methylmorpholine- N-O xide (NMMO) solutions, was used to modify cellulose nanocrystal (CNC) photonic films.

View Article and Find Full Text PDF

Developing actuators with multi-responsibility, large deformation, and predefined shapes is critical for the application of actuators in the field of artificial intelligence. Herein, we report the preparation of a new type of unimorph actuators containing phenol-formaldelyde resin (PFR) and graphene oxide (GO) using the chiral nematic structure of cellulose nanocrystals (CNCs) as the template. The so-obtained PFR/GO films have a unimorph structure with an asymmetric distribution of GO across the film.

View Article and Find Full Text PDF

Whole valorization of carbohydrate and lignin from biomass was achieved by rapid flow-through fractionation (RFF) within 15 min. Wheat straw was effectively deconstructed into its principle components without degradation by using easily recyclable aqueous formic acid (72 wt %) at 130 °C. The obtained cellulose-rich solid showed a nearly complete glucan recovery and 73.

View Article and Find Full Text PDF

Formic acid/water binary solvent extraction with formic acid fraction lower than 77.5% (w/w) of azeotrope was used to extract hemicellulose-derived saccharides from poplar wood at various levels of severity. The highest xylose yield of 77.

View Article and Find Full Text PDF

In this study, the pre-hydrolysis liquor (PHL) was recycled during aspen chip water pre-hydrolysis, and the effects of PHL recycling on the extraction and accumulation of the hemicellulosic saccharides especially that with high molecular weight in the PHL were studied. The results showed that the concentration of hemicellulose saccharides in PHL depended on the pre-hydrolysis temperature and PHL recycling times. Compared to the unrecycled PHL, the concentration of hemicellulosic saccharides in PHL increased significantly when recycling PHL once or twice at 170°C.

View Article and Find Full Text PDF

A novel nanocomposite based on black wattle (BW) tannin and nanocellulose was prepared and applied in heavy metal ions adsorptive removal from aqueous solutions. Firstly, nanocrystalline cellulose was oxidized by sodium periodate to get dialdehyde nanocellulose (DANC). BW tannin was then covalently immobilized onto DANC, which was used as both the matrix and crosslinker, to obtain tannin-nanocellulose (TNCC) composite.

View Article and Find Full Text PDF

Prehydrolysis of lignocellulose produces abundant hemicellulose-derived saccharides (HDS). To obtain pure HDS for application in food or pharmaceutical industries, the prehydrolysis liquor (PHL) must be refined to remove non-saccharide compounds (NSC) derived from lignin depolymerization and carbohydrate degradation. In this work, activated carbon (AC) adsorption was employed to purify HDS from NSC with emphasis on adsorption selectivity.

View Article and Find Full Text PDF

A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.

View Article and Find Full Text PDF