Anomalous negative phototransistors have emerged as a distinct research area, characterized by a decrease in channel current under light illumination. Recently, their potential applications have been expanded beyond photodetection. Despite the considerable attention given to negative phototransistors, negative photoconductance (NPC) in particular remains relatively unexplored, with limited research advancements as compared to well-established positive phototransistors.
View Article and Find Full Text PDFFlexoelectricity originates from the electromechanical coupling interaction between strain gradient and polarization, broadly applied in developing electromechanical and energy devices. However, the study of quantifying the longitudinal flexoelectric coefficient () which is important for the application of atomic-scale two-dimensional (2D) materials is still in a slow-moving stage, owing to the technical challenges. Based on the free-standing suspension structure, this paper proposes a widely applicable method and a mensurable formula for determining the constant of layer-dependent 2D materials with high precision.
View Article and Find Full Text PDFFlexoelectricity and photoelectricity with their coupled effect (the so-called flexo-photoelectronic effect), are of increasing interest in the study of electronics and optoelectronics in van der Waals layered semiconductors. However, the related device design is severely restricted owing to the ambiguous underlying physical nature of flexo-photoelectronic effects originating from the co-manipulation of light and strain-gradients. Here, flexoelectric polarization and the flexo-photoelectronic effect of few-layered semiconductors have been multi-dimensionally investigated from high-resolution microscopic characterization on the nanoscale, physics analysis, and deriving a device design.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
The simulation of human brain neurons by synaptic devices could be an effective strategy to break through the notorious "von Neumann Bottleneck" and "Memory Wall". Herein, opto-electronic synapses based on layered hafnium disulfide (HfS) transistors have been investigated. The basic functions of biological synapses are realized and optimized by modifying pulsed light conditions.
View Article and Find Full Text PDF