Adsorption natural gas (ANG) is a technology in which natural gas is stored on the surface of porous materials at relatively low pressures, which are promising candidates for adsorption of natural gas. Adsorbent materials with a large surface area and porous structure plays a significant role in the ANG technology, which holds promise in increasing the storage density for natural gas while decreasing the operating pressure. Here, we demonstrate a facile synthetic method for rational construction of a sodium alginate (SA)/ZIF-8 composite carbon aerogel (AZSCA) by incorporating ZIF-8 particles into SA aerogel through a directional freeze-drying method followed by the carbonization process.
View Article and Find Full Text PDFBiomass aerogels are attractive in various applications owing to their inherent advantages of renewability, biodegradability and eco-friendly. Herein, a novel composite aerogel of konjac glucomannan (KGM)/TEMPO-oxidized cellulose nanofibers (TOCNF)@HKUST-1 (KTA@HKUST-1) is prepared through a facile vacuum impregnation method combined with the directional freeze-drying process, which using KGM and TOCNF as raw materials. The structural analyses disclose that the KTA@HKUST-1 has a hierarchical porosity, in which HKUST-1 can provide micropores for adsorption, while the meso-/macropores from KTA act as high-speed channels to improve diffusion and mass transfer rate to transport CO components into the micropores of HKUST-1.
View Article and Find Full Text PDFCellulose derived carbon aerogel (CA) with unique three-dimensional network coated with polyaniline (PANI) on its surface is used as a scaffolding framework to anchor ZIF-8. The designed ZIF-8 derived porous carbon (ZC)/PANI@CA (ZPCA) hybrid carbon composite through a facile solution immersion chemical route and subsequent carbonization process is employed as electrode for supercapacitor, which has contributed a large specific surface area, a hierarchical porous structure and reasonable N content (up to 6.27 at.
View Article and Find Full Text PDF