Ultrasonic shot peening(USP) is an advanced surface treatment technology for obtaining excellent surface properties or manufacturing a three-dimensional curved surface of the metal sheets. The impact of the medium driven by ultrasonic vibration is significant to parameter optimization and excellent performance of the USP technology. However, the impact characteristics of the medium lack careful study, which is a complex dynamic analysis involving many factors, such as collision, plastic deformation, air pressure, etc.
View Article and Find Full Text PDFIn this work, friction stir lap welding (FSLW) and ultrasonic-assisted friction stir lap welding (UAFSLW) was applied to 6-mm-thick 7075-T6 alloy sheets using three welding tools with the same process parameters. The joint formation, microstructural characteristics, and mechanical properties of the resulting lap joints were then investigated. The results showed that ultrasonic vibration significantly promoted the flow of metal at the interface, enlarged the size of the stirred zone (SZ), and reduced the angle between the hook defect and the interface.
View Article and Find Full Text PDFThis study investigates the effects of axial ultrasonic vibration on the microstructure evolution, residual stresses distribution and fatigue fracture behaviour of a 7N01-T4 joint, and demonstrates that ultrasonic vibration can significantly promote the flow of plasticised metals, expand the stirred zone (SZ) width and refine the grain size. The longitudinal residual stresses of the joints are dominant, and the peak longitudinal residual stresses of the thermo-mechanically affected zone (TMAZ) on the advancing side (AS) (TMAZ-AS) in the ultrasonic-assisted friction stir welding (UAFSW) joint are 31.5 MPa lower than those in the friction stir welding (FSW) joint.
View Article and Find Full Text PDF