Publications by authors named "Mengfei Ni"

Silicon microneedle (Si-MN) systems are a promising strategy for transdermal drug delivery due to their minimal invasiveness and ease of processing and application. Traditional Si-MN arrays are usually fabricated by using micro-electro-mechanical system (MEMS) processes, which are expensive and not suitable for large-scale manufacturing and applications. In addition, Si-MNs have a smooth surface, making it difficult for them to achieve high-dose drug delivery.

View Article and Find Full Text PDF

Constructing an antifouling surface cost-effectively is vitally important for many applications. Herein, a series of silicon substrates with micro-pyramid structures and p-n junctions were fabricated following a simple industrial processing flow, among which the pn-Si substrate, fabricated through boron doping of a micro-pyramid structured n-type silicon wafer, exhibited the most pronounced antibacterial performance. Broad-spectrum bactericidal and bacteriostatic activity of pn-Si under ambient light illumination was observed, with an inhibition ability of 73-100% compared to that of a bare glass against both airborne and contact-transmitted bacteria in the intensive care unit.

View Article and Find Full Text PDF

The swelling-shrinking transition of hydrogels is crucial for their wide applications such as actuators and drug delivery. We hereby fabricated a smart hydrogel with ferrocene groups on pendant of polymer networks. While it was immersed in the water-soluble pillar[6]arene (WP6) aqueous solution, the hydrogel was dramatically swollen, which was an approximately 11-fold promotion in weight compared with that in pure water, due to the formation of the inclusion complexes between WP6 and ferrocene groups in the hydrogel.

View Article and Find Full Text PDF

It was found that spontaneous isomerization takes place between three isomers of a pillar[5]arene (P5)-based pseudo[1]rotaxane. The isomerization process could be monitored by (1)H NMR spectra in polar solvent and the geometric configurations of the three isomers were further evaluated by theoretical calculations. In the threaded forms, the alkyl side chain might be preorganized by intramolecular N-HO bonds between the urea group of the side chain and the methoxy group of the P5 and further stabilized by multiple interactions, including H-bonding, C-H∙∙∙π interactions, and the steric effect of the N-Boc moiety.

View Article and Find Full Text PDF

Mono-urea-functionalized pillar[5]arenes were prepared which exhibited abnormal urea behaviors. They were shown to form pseudo[1]rotaxanes with poor anion binding abilities in solution and [c2]daisy chains with an abnormal urea motif in the solid state.

View Article and Find Full Text PDF

A bis-urea-functionalized pillar[5]arene has been synthesized and shown to form [2]pseudorotaxanes spontaneously with linear alkyl dicarboxylates in highly polar solvent DMSO, in which the hydrogen bonding interactions between the bis-urea hydrogens and dicarboxylate oxygens play an important role in stabilizing the novel [2]pseudorotaxanes alongside C-Hπ interactions.

View Article and Find Full Text PDF

Ureidopyrimidinone functionalized pillar[5]arene (UPyP5) was synthesized and employed to complex with a bisparaquat derivative (G) to form supramolecular polymers at relatively high concentration. The orthogonal binding interactions including quadruple hydrogen bonding and host-guest interaction should play vital roles in the construction of this linear assembly.

View Article and Find Full Text PDF