Publications by authors named "Mengfei Lu"

Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.

View Article and Find Full Text PDF

Compressive strain, downshifting the d-band center of transition metal oxides, is an effective way to accelerate the sluggish kinetics of oxygen evolution reaction (OER) for water electrolysis. Here, we find that anisotropic thermal expansion can produce compressive strains of the IrO octahedron in SrIrO catalyst, thus downshifting its d-band center. Different from the previous strategies to create constant strains in the crystals, the thermal-triggered compressive strains can be real-timely tuned by varying temperature.

View Article and Find Full Text PDF
Article Synopsis
  • A high-quality genome of rosemary (Salvia rosmarinus) was generated, revealing 46,121 protein-coding genes and a significant genome duplication around 28.3 million years ago, enhancing understanding of its evolution and environmental adaptation.
  • Comparative analysis showed rosemary's close genetic relationship with Salvia splendens and Salvia miltiorrhiza, with 1,918 gene families expanded, 35 involved in producing antioxidant components important for environmental resilience.
  • Multi-omics analysis indicated that certain antioxidant biosynthesis genes were up-regulated during abiotic stress, demonstrating how rosemary adapts to harsh conditions by stabilizing ROS levels and supporting cell functionality through integrated metabolic processes.
View Article and Find Full Text PDF

The sluggish electron transfer kinetics in electrode polarization driven oxygen evolution reaction (OER) result in big energy barriers of water electrolysis. Accelerating the electron transfer at the electrolyte/catalytic layer/catalyst bulk interfaces is an efficient way to improve electricity-to-hydrogen efficiency. Herein, the electron transfer at the SrFeO@SrFeOOH bulk/catalytic layer interface is accelerated by heating to eliminate charge disproportionation from Fe to Fe and Fe in SrFeO, a physical effect to thermally stabilize high-spin Fe (te), providing available orbitals as electron transfer channels without pairing energy.

View Article and Find Full Text PDF

, a new species of Rosaceae from western Sichuan, China, is described and illustrated. Morphologically, we inferred that the new species belongs to CotoneasterSer.Salicifolii sensu Yü et al.

View Article and Find Full Text PDF

The overpotentials of electrochemical oxygen evolution reaction (OER) inherently originate from high electron transfer barriers of the redox couple driven water oxidation. Here, we propose a heat-induced magnetic transition strategy to reduce the spin-related electron transfer barriers. Coupling heat into electrochemical OER on a ferro-antiferromagnetic core-shell NiFeN@NiFeOOH, the heat-induced ferro-to-paramagnetic transition for NiFeN core at 55 °C and antiferro-to-paramagnetic transition for NiFeOOH shell at 70 °C significantly accelerate and accordingly achieve a cascaded Ni/Ni driven water oxidation reaction.

View Article and Find Full Text PDF

An effective pathway to cope with the sluggish oxygen evolution reaction (OER) is to accelerate the electron transfer kinetics. Transition metal with high valence states doping can accelerate the reaction kinetics to afford high inherent activity. Herein, a novel trimetallic NiFeCr nanoalloy as an OER electrocatalyst is synthesized by replacing partial Fe in the NiFe alloy with Cr.

View Article and Find Full Text PDF

Human telomerase is responsible for the maintenance of chromosome end structures and is a valuable biomarker for malignant growth. However, the accurate measurement of telomerase activity at the single-cell level has remained a great challenge. Here we develop a simple quantum dot (QD)-based electrochemical biosensor for stripping voltammetric detection of telomerase activity at the single-cell level.

View Article and Find Full Text PDF

We develop a reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue (MB) to DNA with alternating AT base sequence for sensitive detection of adenosine. We design a strand 1 with MB-modified thymine (T) base in the proximal 3' termini as the capture probe for its immobilization on the gold electrode and a 3' termini ferrocene (Fc)-modified aptamer for the recognition of adenosine. The hybridization of strand 1 with the aptamer leads to the formation of a double-stranded DNA (dsDNA) and consequently the away of MB from the electrode surface and the close of Fc to the electrode surface, generating a small value of I/I (I and I are the peak currents of MB and Fc, respectively).

View Article and Find Full Text PDF

Polynucleotide kinase (PNK) plays an essential role in cellular nucleic acid metabolism and the cellular response to DNA damage. However, conventional methods for PNK assay suffer from low sensitivity and involve multiple steps. Herein, we develop a simply electrochemical method for sensitive detection of PNK activity on the basis of Au nanoparticle (AuNP)-mediated lambda exonuclease cleavage-induced signal amplification.

View Article and Find Full Text PDF

Background: Rapid advances in scientific research have led to an increase in public awareness of genetic testing and pharmacogenetics. Direct-to-consumer (DTC) genetic testing companies, such as 23andMe, allow consumers to access their genetic information directly through an online service without the involvement of healthcare professionals. Here, we evaluate the clinical relevance of pharmacogenetic tests reported by 23andMe in their UK tests.

View Article and Find Full Text PDF

A simple ratiometric electrochemical biosensor is developed for sensitive detection of target DNA based on DNA four-way junction (DNA-4WJ) formation and enzyme-assisted recycling amplification. This biosensor can be easily fabricated by a one-step assembly of ratiometric probes and simply performed by a one-step incubation procedure. In the presence of target DNA, two unmodified DNA oligonucleotides may cooperatively hybridize with a hairpin probe in the triple-helix molecular beacon (THMB) to form a DNA-4WJ, which may cause conformational transduction and induce the change in the distance between two redox labeling probes and the electrode surface.

View Article and Find Full Text PDF