This study investigated the co-transport behaviors of nano zero-valent iron (nZVI) and Cd(II) in the presence of soil nanoparticles (SNPs) under various SNPs/nZVI mass ratios. It was illustrated that the mobility of colloidal Cd(II) was highly dependent on the nZVI-SNPs heteroaggregation behavior. In the case of 40 mg/L nZVI with SNPs/nZVI mass ratios > 1, the formation of stable SNPs-nZVI heteroaggregates with hydrodynamic diameters (D) < 500 nm facilitated the nZVI and colloidal Cd(II) transport at their effluent mass recoveries of 34.
View Article and Find Full Text PDFConstructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs.
View Article and Find Full Text PDFPhthalate acid esters (PAEs) are frequently detected in the global environment and can cause potential health hazards. In this study, quantitative exposure risk assessment was undertaken to derive soil generic assessment criteria (GAC) for six representative PAEs under the agricultural land use in the evaluated Chinese regions, which coupled multi-media transport and human exposure models based on multiple exposure pathways including vegetables consumption, dermal absorption, ingestion of soil and dust, and the exposure from non-soil sources. It is identified that the PAEs in agricultural soil are dominated by DEHP and DnBP representing 72-96% of the total PAEs.
View Article and Find Full Text PDFAcid mine drainage (AMD) rich in arsenic (As) and antimony (Sb) is considered as a significant environmental challenge internationally. However, simultaneous removal of As and Sb from AMD is still inadequately studied. In this study, a highly effective and simple approach was proposed for mitigating As and Sb-rich AMD, which involves in-situ formation of layered double hydroxides (LDHs).
View Article and Find Full Text PDFSulfidated zero-valent iron (ZVI) and biochar-supported ZVI have received increasing attention for their potential to dechlorinate trichloroethylene. However, minimal data are available regarding the combined effect of sulfur and biochar ZVI on trichloroethylene byproducts. The primary aim of the current study is to determine whether sulfur- and biochar-modified ZVI (ZVI-BC-S) enhances the removal of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) from groundwater.
View Article and Find Full Text PDFThis study discovered that nanosized zero valent magnesium (nZVMg) could be formed during the electrochemical corrosion of microsized ZVMg (mZVMg) in aqueous solution. It is observed that the nZVMg particle sizes were less than 50 nm with the specific surface area of 54.63 m/g after it was corroded for 96 h (ZVMg) at the expense of losing about 60 wt% Mg.
View Article and Find Full Text PDFPerfluoroalkyl acid substances (PFAAs), such as perfluorobutanoic acid (PFBA), perfluorobutanoic sulfonic acid (PFBS), perfluorooctane acid (PFOA) and perfluoroooctane sulfonic acid (PFOS) are frequently detected in the global environment and can cause potential health hazards even at low levels. In this study, quantitative human health risk assessment was undertaken to derive soil generic assessment criteria (GAC) for four PFAAs under the agricultural land scenario in the evaluated Chinese regions, which considered multiple exposure pathways including vegetables consumption, dermal absorption, ingestion of soil and dust, and exposure from non-soil sources. It is showed that the calculated GAC for four PFAAs in Guangdong and Shandong Provinces were less stringent than those in Zhejiang and Jiangsu Provinces, and Shanghai City, owing to the low exposure from non-soil sources in former two provinces.
View Article and Find Full Text PDFThe simultaneous removal of hexavalent chromium (Cr(VI)) and Trichloroethylene (TCE) is facing great challenges, and the influences of the biochar on their removal by nanoscale zero-valent iron (nZVI) are poorly understood and seldom addressed in the literature. The rice straw pyrolysis at 700 °C (RS700) and their supported nZVI composites were investigated on the removal of Cr(VI) and TCE by batch experiments. The surface area and chromium bonding state of biochar supported nZVI with and without Cr(VI)-TCE loading were analyzed by Brunauer-Emmett-Teller analysis and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFIn this study, efficient remediation of -chloroaniline (PCA)-contaminated soil by activated persulfate (PS) using nanosized zero-valent iron/biochar (B-nZVI/BC) through the ball milling method was conducted. Under the conditions of 4.8 g kg B-nZVI/BC and 42.
View Article and Find Full Text PDFCoFeO/hydrochar composites (FeCo@HC) were synthesized via a facile one-step hydrothermal method and utilized to activate peroxymonosulfate (PMS) for simultaneous degradation of monochlorobenzene (MCB) and p-chloroaniline (PCA). Additionally, the effects of humic acid, Cl, HCO, HPO HPO and water matrices were investigated and degradation pathways of MCB and PCA were proposed. The removal efficiencies of MCB and PCA were higher in FeCo@HC140-10/PMS system obtained under hydrothermal temperature of 140 °C than FeCo@HC180-10/PMS and FeCo@HC220-10/PMS systems obtained under higher temperatures.
View Article and Find Full Text PDFIron sulfides have attracted growing concern in heterogeneous Fenton reaction. However, the structure of iron sulfides is different from that of iron oxides and how the structures affect the activation property of hydrogen peroxide (HO) remains unclear. This study investigated benzene removal through the activation of HO by the synthesized magnetite (FeO) and greigite (FeS).
View Article and Find Full Text PDFThe agricultural soils in China are suffered from serious polychlorinated biphenyls (PCBs) contamination, however, the valid management standards for farmland are absent to efficiently control the health risks of PCBs exposure. This study analyzed the contamination characteristics and main composition of PCBs in agricultural soils of the southeastern China from the published literature over the past 20 years, and derived the regional generic assessment criteria (GAC) using an exposure modelling approach for individual and total PCBs (∑PCBs) via multiple exposure pathways such as ingestion of soil and dust, consumption of vegetables, dermal contact with soil and dust, ingestion of soil attached to vegetables, and inhalation of soil vapour and soil-derived dust outdoors under the agricultural land scenario. It is identified that the averaged ∑PCBs concentration of 80.
View Article and Find Full Text PDFIn this work, S doped FeB (FeB-S) was synthesized by sintering method and applied for the enhanced dechlorination of trichlorethylene (TCE). The degradation ratio (D) of TCE was 99.8% with reaction rate constant (k) of 0.
View Article and Find Full Text PDFImplementing an economical and effective measure for treating acid mine drainage (AMD) from abandoned mines using low-cost restoration reagents present a significant challenge. In this study, natural attapulgite (AT) and soda residue (SR) composite particles (AT-SR) were firstly prepared and utilized in AMD treatment. The efficiencies and mechanisms of AT-SR composites for regulating acidity and removing metals in AMD, the critical factors influencing the treatment efficiencies, and the regeneration performance and environmental risk were investigated.
View Article and Find Full Text PDFThe heteroaggregation mechanism of nZVI with four types of natural soil nanoparticles (SNPs) extracted from representative soils in northern and southern China was investigated. Heteroaggregation rates between nZVI and SNPs were quantified by dynamic light scattering and evaluated as a function of ionic strength at pH 7. The nZVI-SNPs heteroaggregates were stable with hydrodynamic diameters (D) ranging from 400 to 600 nm in 0.
View Article and Find Full Text PDFA facile, green and easily-scalable method of synthesizing stable and effective nano zero-valent iron (nZVI)‑carbon composites for peroxymonosulfate (PMS) activation was highly desirable for in-situ groundwater remediation. This study developed a two-step hydrothermally assisted carbothermal reduction method to prepare nZVI-encapsulated carbon composite (Fe@C) using rice straw and ferric nitrate as precursors. The hydrothermal reactions were conducive to iron loading, and carbothermal temperature was crucial for the aromatization and graphitization of hydrothermal carbonaceous products, the reductive transformation of iron oxides into nZVI and the development of porous structure in composites.
View Article and Find Full Text PDFSince little is known about the sorption/desorption behaviors of the mixed chlorobenzenes (CBs) on fresh and aged biochar, this study evaluated the co-sorption/co-desorption mechanism of the mixed monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB) and 1,2,4-tirchlorobenzene (1,2,4-TCB) on the fresh bulk biochar derived from pinewood sawdust and corn straw under the heat treatment temperature (HTT) of 300 and 500 °C, and elucidated the aging-induced changes in the sorption/desorption of mixed CBs by biochar. The distinct sorption capacities of MCB< 1,2-DCB< 1,2,4-TCB were observed on all the tested biochar with the differences being further enhanced following the rise of HTT, as the main sorption mechanism was converted from phase partitioning to π-π interaction between graphitized biochar moieties and more hydrophobic aromatic chemicals. In comparison to the fresh biochar, the sorption suppression of the mixed CBs on the aged biochar was likely attributable to the reduction in accessibility to the aromatic carbon in biochar by introducing O-containing polar moieties on the biochar surfaces.
View Article and Find Full Text PDF1,4-Dioxane degradation under both batch-scale and column experiments has been investigated within the biochar activated peroxymonosulfate (PMS) system for in-situ remediation of 1,4-dioxane contaminated groundwater. In case of the batch experiments, the 1,4-dioxane degradation efficiencies were significantly increased with the increased biochar pyrolysis temperatures. The optimized 1,4-dioxane degradation efficiency at 89.
View Article and Find Full Text PDFNumerous studies have explored the transport mechanism of biochar colloids in porous medium. However, the effect of feedstock biopolymer compositions and pyrolytic temperature on carbon stability and mobility of biochar colloids is limited. This study prepared four ball milled biochar colloids pyrolyzed from lignin-rich pinewoods and cellulose-rich corn stalks under 300 °C and 500 °C (termed as PW300, PW500, CS300, CS500) and analyzed their differences in the chemical stability and transport behaviors.
View Article and Find Full Text PDFThe removal mechanism from the reductive dechlorination of trichloroethylene (TCE) by zero valent magnesium (ZVMg) in aqueous solution is systematically studied. Following the preparation and characterization of ball-milled micro ZVMg with graphite (ZVMg/C) particles, this paper evaluated the TCE reaction rates, pathways, utilization rates and aging effects of ZVMg/C particles in aqueous solution under uncontrolled pH conditions. Overall, 38 μM of TCE was transformed by 10 g/L of ZVMg/C to methane (62.
View Article and Find Full Text PDFSci Total Environ
August 2021
The multiple injections of nanoscale zero valent iron (nZVI) slurry, an efficient method to remediate contaminated groundwater, requires an accurate assessment of the transport and risks of these particles in saturated porous medium. However, the influencing mechanism of nZVI transport under multiple injection conditions is not fully understood. In this experimental study, one-dimensional sand columns were used to evaluate the effects of injection concentrations, particle sizes and surface chemical corrosion on the transport of carboxymethyl cellulose modified nZVI (CMC-nZVI) under triple injection conditions, where the different volumes of NaCl solution were flushed through the columns between the injections.
View Article and Find Full Text PDFLayered double hydroxide (LDH) with the metal composition of Cu(II)Mg(II)Fe(III) was prepared as an adsorbent for fast adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). 84% of PFOS and 48% of PFOA in relation to the equilibrium state were adsorbed in the first minutes of contact with 0.1 g/L of suspended µm-sized LDH particles.
View Article and Find Full Text PDFThe attapulgite of different morphologies and mineral compositions were successfully obtained following the treatment by HCl and HF with different concentrations. Variations of morphologies, elemental and mineral components of the pristine and modified attapulgite were investigated and assessed in detail by a series of characterization methods. The SEM-EDS results indicated significant variations on the contents and morphologies of silicon after acid modification.
View Article and Find Full Text PDFSchistura falamensis, a new species of nemacheilid loach, is described from the main channel of the Manipur River in the Irrawaddy River basin, Chin State, western Myanmar. It differs from other congeners of the genus Schistura by a combination of the following characters: 5-8 vertical bars on body; indistinct bars in front of dorsal-fin origin; bars on posterior part of body regular, twice as wide as interspace; black caudal basal bar dissociated, short, not reaching ventral extremity; males with suborbital flap; lateral line complete; and processus dentiformis weak. Schistura altuscauda is a new species described from the Htin stream, Mindat Town, Chin State, Myanmar.
View Article and Find Full Text PDFDissolved black carbon (DBC) is becoming increasingly concerned by researchers due to its unique environmental behavior. However, understanding of the influence mechanism of biopolymer compositions of cellulose (CEL), hemicellulose (HEM) and lignin (LIG) on the formation and physiochemical characteristics of DBC from lignocellulose-based biochar is limited. This study therefore examined the formation of DBCs derived from the biopolymer compositions, corn straw (CS), corncob (CC), bamboo sawdust (BS) and pinewood sawdust (PS) under the heat treatment temperatures (HTTs) of 300-500 °C.
View Article and Find Full Text PDF