Salt bladders, specialized structures on the surface of quinoa leaves, secrete Na to mitigate the effects of the plant from abiotic stresses, particularly salt exposure. Understanding the development of these structures is crucial for elucidating quinoa's salt tolerance mechanisms. In this study, we employed transmission electron microscopy to detail cellular differentiation across the developmental stages of quinoa salt bladders.
View Article and Find Full Text PDFGranulomas are a key pathological feature of tuberculosis (TB), characterized by cell heterogeneity, spatial composition, and cellular interactions, which play crucial roles in granuloma progression and host prognosis. This study aims to analyze the transcriptome profiles of cell populations based on their spatial location and to understand the core transcriptome characteristics of granuloma formation and development. In this study, we collected four clinical biopsy samples including (Mtb) infected lung (MTB-L) and omentum tissues (MTB-O), as well as two lung and omentum biopsies from non-TB patients.
View Article and Find Full Text PDFExtensive applications of bisphenols in industrial products have led to their release into aquatic environments, causing a great threat to human health due to their endocrine-disrupting effects, whereas existing methods are difficult to implement the rapid and high-throughput detection of multiple bisphenols. To circumvent this issue, we constructed a sensor array using two luminescent metal-organic frameworks (LMOFs) (Zr-BUT-12 and Ga-MIL-61) for the rapid discrimination of six bisphenol contaminants (BPA, BPS, BPB, BPF, BPAF, and TBBPA). Wherein, Zr-BUT-12 and Ga-MIL-61 exhibited different fluorescence-emission properties and good luminescent stability.
View Article and Find Full Text PDFThe current limitations of single-molecule localization microscopy (SMLM) in deep tissue imaging, primarily due to depth-dependent aberrations caused by refractive index (RI) mismatch, present a significant challenge in achieving high-resolution images at greater depths. To extend the imaging depth, we optimized the imaging buffer of SMLM with the RI matched to that of the objective immersion medium and systematically evaluated five different RI-matched buffers, focusing on their impact on the blinking behavior of red-absorbing dyes and the quality of reconstructed super-resolution images. Particularly, we found that clear unobstructed brain imaging cocktails-based imaging buffer could match the RI of oil and was able to clear the tissue samples.
View Article and Find Full Text PDFPredicting protein-ligand binding sites is an integral part of structural biology and drug design. A comprehensive understanding of these binding sites is essential for advancing drug innovation, elucidating mechanisms of biological function, and exploring the nature of disease. However, accurately identifying protein-ligand binding sites remains a challenging task.
View Article and Find Full Text PDFJ Neurosci Methods
December 2024
Background: With the arrival of the new generation of artificial intelligence wave, new human-robot interaction technologies continue to emerge. Brain-computer interface (BCI) offers a pathway for state monitoring and interaction control between human and robot. However, the unstable mental state reduce the accuracy of human brain intent decoding, and consequently affects the precision of BCI control.
View Article and Find Full Text PDFNanopore selective sequencing allows the targeted sequencing of DNA of interest using computational approaches rather than experimental methods such as targeted multiplex polymerase chain reaction or hybridization capture. Compared to sequence-alignment strategies, deep learning (DL) models for classifying target and nontarget DNA provide large speed advantages. However, the relatively low accuracy of these DL-based tools hinders their application in nanopore selective sequencing.
View Article and Find Full Text PDFBackground: Early detection of colorectal cancer (CRC) significantly enhances patient outcomes. Conventional CRC screening tools, like endoscopy and stool-based tests, have constraints due to their invasiveness or suboptimal patient adherence. Recently, liquid biopsy employing plasma cell-free DNA (cfDNA) has emerged as a potential noninvasive screening technique for various malignancies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
The state-of-the-art triboelectric nanogenerator (TENG) technology has numerous advantages and creates new prospects for the rapid development of the Internet of Things (IoT) in marine environments. Here, to accelerate the application process of TENG, an elaborately designed multilayered sleeve-structured hybrid nanogenerator (M-HNG) is developed to efficiently and persistently harvest marine energy. The M-HNG integrates an electromagnetic nanogenerator (EMG) with four coils and a multilayered sleeve-structured TENG (MS-TENG) with three freestanding layer units to increase spatial utilization efficiency.
View Article and Find Full Text PDFThe global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed.
View Article and Find Full Text PDFIn interferometry with a computer-generated hologram (CGH), the substrate error of the CGH limits its high-precision aspheric measurement application. The propagation form of the substrate error is still ambiguous although 0th-order calibration can partly correct it. We established the ray propagation in a three-dimensional model in order to solve the ambiguity of substrate error propagation.
View Article and Find Full Text PDFAn efficient and metal-free method for the synthesis of 3-aryl pyrido[1,2-]indoles from aryne intermediates and 2-pyridinyl-substituted -QMs was successfully developed under ambient conditions. The reaction offered a novel and practical protocol to access some diverse functional molecules in good to excellent yields. The proposed mechanism indicated that the reaction proceeded a formal [3 + 2] cycloaddition step.
View Article and Find Full Text PDFHybrid nanogenerators (HNGs) represent a promising avenue for water energy harvesting, yet their commercial viability faces hurdles such as limited power output, poor coupling, and constrained operational lifespans. Here, a highly coupled triboelectric-electromagnetic magnetic-levitation hybrid nanogenerator (ML-HNG) is introduced that shows great potential for water energy harvesting. The ML-HNG fulfills the challenges of high power output, strong coupling, and long operational lifespans.
View Article and Find Full Text PDFThe parameter setting of functional electrical stimulation (FES) is important for active recovery training since it affects muscle health. Among the FES parameters, current amplitude is the most influential factor. To explore the FES effect on the maximum stimulation time, this study establishes a curve between FES current amplitude and the maximum stimulation time based on muscle fatigue.
View Article and Find Full Text PDFAfter more than five decades, Moore's Law for transistors is approaching the end of the international technology roadmap of semiconductors (ITRS). The fate of complementary metal oxide semiconductor (CMOS) architecture has become increasingly unknown. In this era, 3D transistors in the form of gate-all-around (GAA) transistors are being considered as an excellent solution to scaling down beyond the 5 nm technology node, which solves the difficulties of carrier transport in the channel region which are mainly rooted in short channel effects (SCEs).
View Article and Find Full Text PDF