The mechanism and application of localized surface plasmon resonance induced photocatalytic reactions remain an issue of interest. In this work, we used Au@Ag core-shell nanorods as a platform for plasmon-driven photocatalysis, which was investigated by surface-enhanced Raman scattering (SERS) spectroscopy. The -aminothiophenol (PATP) and -nitrothiophenol (PNTP) adsorbed on the nanorods were irradiated with different excitation wavelengths (633 nm, 785 nm) and transformed into 4,4'-dimercaptoazobenzene (DMAB) as evidenced by the emerging Raman peaks at 1142 cm, 1390 cm, 1440 cm, and 1477 cm, corresponding to hot carrier dominated oxidation of PATP and reduction of PNTP.
View Article and Find Full Text PDFPlasmon-induced photocatalysis on noble metal surfaces has attracted broad attention due to its application in sunlight energy conversion, while the selectivity of plasmonic platforms remains unclear. Herein, we present the controlled plasmon-mediated oxidation of para-aminothiophenol (-ATP) by employing Au@Ag core-shell nanostars with tunable tip plasmons in visible-near-infrared range as reactors. In-situ Raman measurements indicate that Au@Ag core-shell nanostars essentially promote the conversion of -ATP to 4,4'-dimercaptoazobenzene (DMAB) due to hot carriers excited by localized surface plasmon resonance.
View Article and Find Full Text PDFCoaxial electrospinning (co-electrospinning) technique has greatly expanded the universality of fabricating core-shell polymer nanofibers. However, the effect of solution miscibility on the morphology of co-electrospun products remains unclear. Herein, different cellulose acetate (CA) solutions with high solution miscibility but distinctly different electrospinnability were used to survey the effect of solution miscibility on the co-electrospinning process.
View Article and Find Full Text PDF