ACS Appl Mater Interfaces
January 2023
A robust solid electrolyte interface (SEI) is crucial to widen the electrochemical stability window of the electrolyte and enable sustainably stable electrode reactions in aqueous Zn ion batteries. Different from the SEI in nonaqueous electrolytes, it is of great importance to form a functional and stable SEI due to parasitic reactions with water in aqueous Zn ion batteries. However, the concrete SEI formation in aqueous electrolytes has been elusive so far.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Uniform and compact Zn deposition-dissolution is essential to achieve high Coulombic efficiency and long lifespan for Zn anodes. More attention has been commonly focused on the suppression of macroscopic Zn dendrites in the previous reports. The rational control of the microstructure of Zn deposition to prevent the intrinsic volume expansion and pulverization of Zn metal so as to stabilize Zn anodes is less discussed.
View Article and Find Full Text PDFAlthough previous epidemiological studies have reported substantial links between inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and celiac disease (CeD), the causal relationship between the two remains unknown. The purpose of the current study was to evaluate the bidirectional causation between IBD and CeD using Mendelian randomization (MR). We obtained genome-wide association study (GWAS) summary data of IBD (CD and UC) and CeD of thoroughly European ancestry from the IEU GWAS database.
View Article and Find Full Text PDFBackground: Multidrug-resistant pulmonary tuberculosis (MDR-PTB) has become a major cause of high morbidity and mortality related to TB. Conventional drug regimens are ineffective for the treatment of MDR-PTB patients with cavities. This study aimed to evaluate the clinical efficacy and safety of one-way endobronchial valves (EBVs) for the treatment of cavities in MDR-PTB patients.
View Article and Find Full Text PDFMild aqueous Zn batteries have attracted increasing attention for energy storage due to the advantages of high safety and low cost; however, the rechargeability of Zn anodes is one major issue for practical applications. In this work, an effective approach is proposed to improve the reversibility and stability of Zn anodes using advanced acidic electrolytes. A trace amount of acetic acid (HAc) is employed as a buffering agent to provide a stable pH environment in aqueous Zn electrolytes, and thus suppress passivation from precipitation reactions on Zn electrodes.
View Article and Find Full Text PDFNeuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology.
View Article and Find Full Text PDFAging (Albany NY)
December 2020
Expression of β2-microglobulin (β2M) is involved in fibrosis progression in kidney, liver, and heart. In this case-controlled retrospective study, we investigated the role of β2M in the development of pulmonary fibrosis in patients with chronic obstructive pulmonary disease (COPD). Analysis of 450 COPD patients revealed that patients with decreased pulmonary diffusing capacity (DLCO) had increased β2M serum levels.
View Article and Find Full Text PDFDiabetes mellitus can reinforce the small airway dysfunction of chronic obstructive pulmonary disease (COPD) patients. The epithelial-mesenchymal transition (EMT) that is associated with small airway remodeling is activated in the airway epithelial cells (AECs) of both COPD patients and diabetic patients. Transforming growth factor β (TGF-β) can induce EMT via the TGF-β/Smad pathway.
View Article and Find Full Text PDFMagnetic targeting delivery of anti-cancer drug with controlled drug release function has been recognized as a promising strategy for pursuit of the increased chemotherapeutic efficacy and reduced adverse effects. Superparamagnetic nano-carrier is proved to be an efficient manner for superficial tumor therapy like head and neck cancers. The anti-tumor effect of chemotherapy drug can be enhanced by combining with external magnet.
View Article and Find Full Text PDFRecent clinical researches demonstrated "obesity paradox" in chronic obstructive pulmonary disease (COPD) patients. However, why obesity is beneficial to COPD development remains unclear. Obesity is distinguished by hyperinsulinemia, and cellular senescence of airway epithelial cells (AEC) is involved in COPD progression.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) is prevalent in China. The role of body mass index (BMI) in COPD progression and prognosis is unclear. We analyzed the association between BMI and pulmonary function, inflammation levels and exacerbation in Chinese COPD patients.
View Article and Find Full Text PDFObjectives: Cleidocranial dysplasia (CCD) is a rare autosomal-dominantly inherited skeletal dysplasia that is predominantly associated with heterozygous mutations of RUNX2. However, no information is available regarding metabolic changes associated with CCD at present.
Materials And Methods: We analyzed members of a CCD family and checked for mutations in the RUNX2 coding sequence using the nucleotide BLAST program.
Semiconductor photocatalysis currently suffered three main problems, low solar energy utilization, high photo-generated charge recombination rate and the heavy metal ions release by the photo-corrosion. Herein, we developed a visible-light-driven homojunction photocatalyst with the metal-free two-dimensional (2D) graphitic carbon nitride nanosheets (CNNS). By employing liquid exfoliation and chemical blowing approaches, we obtained two kinds of CNNS materials (le-CNNS and cb-CNNS) with different band structures, and subsequently fabricated the homojunction photocatalyst.
View Article and Find Full Text PDFObjective: Evaluate the behavior and function of human umbilical vein endothelial cells (HUVECs) on decellularized extracellular matrix (ECM) deposited by bone marrow mesenchymal stem cells (BMSCs).
Methods: Prepared through chemical approach, decellularized ECM was characterized by use of immunofluorescence staining. The morphology, attachment, proliferation and migration of HUVECs cultured on six-well tissue culture plastic (TCP) and decellularized ECM were investigated.