Soybean allergy is a serious health risk to humans and animals; β-conglycinin is the primary antigenic protein in soybean. Intestinal porcine epithelial (IPEC-J2) cells were used as an physiological model of the intestinal epithelium to study the effects of different concentrations of soybean antigen protein β-conglycinin to identify the involved signaling pathways. The cells were divided into eight groups and either untreated or treated with different concentrations of β-conglycinin, pyrrolidine dithiocarbamate (PDTC), -nitro-l-arginine methyl ester hydrochloride (l-NAME), SP600125, and SB202190 either alone or in combination.
View Article and Find Full Text PDFSoybeans are used increasingly in food products because of their health benefits. In this study, we investigated the effect of soybean antigen protein on weaned piglet intestine. Seventy piglets were randomly divided into seven groups with 10 piglets each.
View Article and Find Full Text PDFβ-Conglycinin (7S) and glycinin (11S) are known to induce a variety of hypersensitivity reactions involving the skin, intestinal tract, and respiratory tract. The present study aimed to identify the mechanism underlying the development of allergy to soybean antigen proteins, using piglets as an animal model. Weaned "Duroc × Landrace × Yorkshire" piglets were fed a diet supplemented with 7S or 11S to investigate the signaling pathway involved in intestinal damage in piglets.
View Article and Find Full Text PDF