Flame-retardant phosphate-based electrolytes effectively enhance lithium-ion battery safety but suffer from poor compatibility with graphite anodes and high-voltage cathodes, hindering scalability. Fluorinated phosphates, though widely used, increase interfacial resistance at the anode, degrading performance. In this work, carbonate solvents with strong polarity are introduced to prevent tris(2,2,2-trifluoroethyl) phosphate (TFEP) from participating in the solvation structure of lithium ions.
View Article and Find Full Text PDFSolid-state polyether electrolytes formed by in-situ ring-opening polymerization (ROP) of 1,3-dioxolane (DOL) have attracted great attention due to their high lithium-ion conductivity, and good interface compatibility. However, DOL ring-opening polymerization is difficult to control, resulting in the formation of poly(1,3-dioxolane) (PDOL) with high molecular weight and high crystallinity, which hinder Li diffusion and deteriorate the interfacial contact. Herein, trimethylsilyl isocyanate (IPTS) was introduced into DOL ring-opening system as a moisture eliminating agent to weaken the Li salt-based initiating system and regulate the polymerization process.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries have been pursued due to their high theoretical energy density and superb cost-effectiveness. However, the dissolution-conversion mechanism of sulfur inevitably leads to shuttle effects and interface passivation issues, which impede Li-S battery practical application. Herein, the approach of adopting transition metal salts (CoI) to engineering the electrolyte is proposed.
View Article and Find Full Text PDFEight previously undescribed solanapyrone analogues, sphasolanapyrones A-H (1-8), together with four structurally related known compounds (9-12) were obtained from the solid fermentation of Nigrospora sphaerica MZW-A, an endophytic fungus isolated from the fresh branches of the endangered conifer Pinus wangii. This study represents the first investigation on the secondary metabolites of endophytic fungus associated with this precious plant. The structures and absolute configurations of compounds 1-8 were elucidated by extensive spectroscopic analysis and electronic circular dichroism (ECD) calculations.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
J Trace Elem Med Biol
December 2024
Purpose: While copper (Cu) is essential for biological organisms, excessive Cu can be harmful. Ferroptosis is a programmed cell death pathway, but the role of ferroptosis in renal injury induced by Cu is limited. The aim of this study was to investigate the role of ferroptosis in kidney injury in chickens and the molecular mechanism by which Cu promotes renal ferroptosis.
View Article and Find Full Text PDFCopper (Cu) is a common trace element additive in animal and human foods, and excessive intake of Cu has been shown to cause hepatotoxicity, but the underlying mechanism remains unclear. Our previous research found that Cu exposure dramatically upregulated mitochondrial miR-12294-5p expression and confirmed its targeted inhibition of CISD1 expression in chicken hepatocytes. Thus, we aimed to explore the potential role of mitomiR-12294-5p/CISD1 axis in Cu exposure-resulted hepatotoxicity.
View Article and Find Full Text PDF"Polymer-in-ceramic" (PIC) electrolytes are widely investigated for all-solid-state batteries (ASSBs) due to their good thermal stability and mechanical performance. However, achieving fast and diversified lithium-ion transport inside the PIC electrolyte and uniform Li deposition at the electrolyte/Li anode interface simultaneously remains a challenge. Besides, the effect of ceramic particle size on Li transport and Li anodic compatibility is still unclear, which is essential for revealing the enhanced mechanism of the performance for PIC electrolytes.
View Article and Find Full Text PDF(Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance.
View Article and Find Full Text PDFPrior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated.
View Article and Find Full Text PDFLi-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free LiMnNiO cathodes.
View Article and Find Full Text PDFPeptide stapling is recognized as an effective strategy for improving the proteolytic stability and cell permeability of peptides. In this study, we present a novel approach for the site-selective unsymmetric perfluoroaryl stapling of Ser and Cys residues in unprotected peptides. The stapling reaction proceeds smoothly under very mild conditions, exhibiting a remarkably rapid reaction rate.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries are a strong contender for the new-generation battery system to meet the growing energy demand due to their significantly high energy density (2600 Wh/kg) and cost-effectiveness. However, the practical operating conditions yield an initial capacity of less than 80 % of the theoretical capacity, resulting in a limited lifespan and hindering broader application. What's worse, current mechanism, especially the evolution process of sulfides for the initial capacity degradation is not clear due to the practical difficulties of effective separation and detection of sulfur-containing components.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2024
Transcranial ultrasound stimulation (TUS) is a noninvasive brain neuromodulation technique. The application of TUS for Alzheimer's disease (AD) therapy has not been widely studied. In this study, a long-term course (28 days) of TUS was used to stimulate the hippocampus of APP/PS1 mice.
View Article and Find Full Text PDFThe protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells.
View Article and Find Full Text PDFUnlabelled: Epithelial-mesenchymal transition (EMT) is a fundamental cellular process frequently hijacked by cancer cells to promote tumor progression, especially metastasis. EMT is orchestrated by a complex molecular network acting at different layers of gene regulation. In addition to transcriptional regulation, posttranscriptional mechanisms may also play a role in EMT.
View Article and Find Full Text PDFGlycerol is a byproduct of biodiesel production. Selective photoelectrochemical oxidation of glycerol to high value-added chemicals offers an economical and sustainable approach to transform renewable feedstock as well as store green energy at the same time. In this work, we synthesized monoclinic WO nanosheets with exposed (002) facets, which could selectively oxidize glycerol to glyceric acid (GLYA) with a photocurrent density of 1.
View Article and Find Full Text PDFThe design of a highly and photomodulated proton conductor is important for advanced potential applications in chemical sensors and bioionic functions. In this work, a metal-organic framework (MOF; ) with high proton conductivity is synthesized with a photosensitive ligand of 5-nitroisophthalic acid (BDC-NO), and it provides remote-control photomodulated proton-conducting behavior. The proton conduction of reaches 3.
View Article and Find Full Text PDFAttention deficit hyperactivity disorder is accompanied by changes in cranial nerve function and cerebral blood flow (CBF). Low-intensity ultrasound stimulation can modulate brain neural activity in attention deficit hyperactivity disorder. However, to date, the modulatory effects of low-intensity ultrasound stimulation on CBF and neurovascular coupling in attention deficit hyperactivity disorder have not been reported.
View Article and Find Full Text PDF