Aluminum (Al) is a metal existing in the human body, yet the immunotoxicity of Al remains elusive. To investigate the immunotoxicity of Al, C57BL/6 mice were treated with 200 or 800 ppm Al via drinking water for 3 months, and thereafter the adaptive immune system was evaluated. In addition, mouse splenocytes and human peripheral blood mononuclear cells (PBMC) were treated with Al in vitro to assess the impact of Al in vitro.
View Article and Find Full Text PDFThe advent of multifunctional nanofibrous membranes (NFMs) has led to the development of next-generation air filters that are ready to intercept fine particulate matters (PMs) and monitor the respiratory diseases. However, it is still challenging to fabricate biodegradable NFMs featuring the desirable combination of high filtration efficiencies, low air resistance, and intelligent real-time monitoring. Herein, a hierarchical nanopatterning approach was proposed to functionalize the stereocomplexed poly(lactic acid) (PLA) (SC-PLA) nanofibers via the combined electrospinning of SC-PLA and electrospray of CNT@ZIF-8 nanohybrids.
View Article and Find Full Text PDFChemokines play a crucial role in immune responses by facilitating the migration of cells expressing corresponding chemokine receptors along concentration gradients. Photobacterium damselae subsp. Damselae (PDD) and Nocardia seriolae (NS) are known to induce substantial mortality in silver pomfret populations, yet there exists a dearth of research regarding the immune response of CCLs in PDD- or NS-infected silver pomfret.
View Article and Find Full Text PDFThe advancement of intelligent and biodegradable respiratory protection equipment is pivotal in the realm of human health engineering. Despite significant progress, achieving a balance between efficient filtration and intelligent monitoring remains a great challenge, especially under conditions of high relative humidity (RH) and high airflow rate (AR). Herein, we proposed an interfacial stereocomplexation (ISC) strategy to facilitate intensive interfacial polarization for poly(lactic acid) (PLA) nanofibrous membranes, which were customized for machine learning-assisted respiratory diagnosis.
View Article and Find Full Text PDFHigh-performance air filtration materials are important for addressing the airborne pollutants. Herein, we propose an unprecedented access to biodegradable poly(lactic acid) (PLA)-based MOFilters with excellent filtering performance and antibacterial activity. The fabrication involved a stepwise in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals at the surface of microfibrous PLA membranes, followed by mechanical polarization under high pressure and low temperature (5 MPa, 40 °C) to trigger the ordered alignment of dipoles in PLA chains and ZIF-8.
View Article and Find Full Text PDFDespite the great potential in fabrication of biodegradable and eco-friendly air filters by electrospinning poly(lactic acid) (PLA) membranes, the filtering performance is frequently dwarfed by inadequate physical sieving or electrostatic adsorption mechanisms to capture airborne particulate matters (PMs). Here, using the parallel spinning approach, the unique micro/nanoscale architecture was established by conjugation of neighboring PLA nanofibers, creating bimodal fibers in electrospun PLA membranes for the enhanced slip effect to significantly reduce the air resistance. Moreover, the bone-like nanocrystalline hydroxyapatite bioelectret (HABE) was exploited to enhance the dielectric and polarization properties of electrospun PLA, accompanied by the controlled generation of junctions induced by the microaggregation of HABE (10-30 wt %).
View Article and Find Full Text PDFBiomimetic mineralization of high-strength apatite structure essentially relies on mimicking the inorganic building blocks of naturally occurring bones. However, conventional routes still have substantial function gaps in providing precision control over the geometrical dimensions and crystalline morphology of biomineralized apatite. Herein, we conceived the concept of microwave-assisted biomineralization (MAB) to customize 1D hydroxyapatite nanowhiskers (HANWs) at graphene templates, rendering the formation of graphene-hydroxyapatite (Gr-HA) nanohybrids.
View Article and Find Full Text PDFCadmium (Cd) is a highly toxic heavy metal in the environment. The aim of this study was to investigate the impact of Cd on natural killer (NK) cells. C57BL/6 mice were treated with 10 ppm Cd via drinking water for 3 months, and the development of NK cells in the bone marrow (BM) and the cytotoxicity of mature NK (mNK) cells in the peripheral immune organs were evaluated thereafter; the impact of Cd on the cytotoxicity of mNK cells from human peripheral blood mononuclear cells (PBMC) was also investigated.
View Article and Find Full Text PDFSplenomegaly is a symptom characterized by the presence of an enlarged spleen. The impact of environmental factors on splenomegaly is largely unknown. In this study, C57BL/6 mice were treated with 125 ppm or 1250 ppm lead (Pb) via drinking water for 8 wk, and the process of splenomegaly was evaluated.
View Article and Find Full Text PDFThe application of poly(lactic acid) (PLA) in the packaging area is frequently dwarfed by the inadequate gas/water barrier properties, low heat resistance and high UV transmittance. Herein, an environmentally friendly and high-efficiency microwave-assisted functionalization (MAF) approach was proposed to aqueous grafting waste bamboo fibers with the bridging agent. It permitted significant promotion of interfacial interactions between the MAF bamboo fibers (MAFBs) and neighboring PLA chains, contributing to uniform dispersion and intimate interphase.
View Article and Find Full Text PDFThe anisotropic hierarchical structures of naturally derived materials have offered useful design principles for the fabrication of high-strength and functional materials. Herein, we unraveled a structure-by-bionics approach to construction of pea pod-mimicking architecture for poly(lactic acid) (PLA) composites impregnated with hydroxyapatite nanowhiskers (HANWs). The HANWs (length of 80-120 nm, diameter of ~30 nm) were customized using microwave-assisted aqueous biomineralization at minute level, which were incorporated into PLA microfibers by electrospinning with filler loadings of 10-30 wt%.
View Article and Find Full Text PDF