Dental caries on the crown's surface is caused by the interaction of bacteria and carbohydrates, which then gradually alter the tooth's structure. In addition, calculus is the root of periodontal disease. Optical coherence tomography (OCT) has been considered to be a promising tool for identifying dental caries; however, diagnosing dental caries in the early stage still remains challenging.
View Article and Find Full Text PDFFractional laser treatment is commonly used for dermatological applications, enabling effective induction of collagen regeneration and significantly reducing recovery time. However, it is challenging to observe laser-induced photodamage beneath the tissue surface in vivo, making the non-invasive evaluation of treatment outcomes difficult. For in vivo real-time study of the photodamage induced by fractional pulsed CO and Nd:YAG lasers commonly utilized for clinical therapy, a portable spectral-domain optical coherence tomography (SD-OCT) system was implemented for clinical studies.
View Article and Find Full Text PDFMetastatic oral squamous cell carcinoma (SCC) displays a poor disease prognosis with a 5-year survival rate of 39%. Chemotherapy has emerged as the mainstream treatment against small clusters of cancer cells but poses more risks than benefits for metastatic cells due to the non-specificity and cytotoxicity. To overcome these obstacles, we conjugated antibodies specific for matrix metalloproteinase-1 (MMP-1), a prognostic biomarker of SCC, to iron-gold bimetallic nanoparticles (FeAu NPs) and explored the capability of this complex to target and limit SSC cell growth via magnetic field-induced hyperthermia.
View Article and Find Full Text PDFWe demonstrate computational multi-directional optical coherence tomography (OCT) to assess the directional property of tissue microstructure. This method is the combination of phase-sensitive volumetric OCT imaging and post-signal processing. The latter comprises of two steps.
View Article and Find Full Text PDFThe interactions between cells and nanomaterials at the nanoscale play a pivotal role in controlling cellular behavior and ample evidence links cell intercommunication to nanomaterial size. However, little is known about the effect of nanomaterial geometry on cell behavior. To elucidate this and to extend the application in cancer theranostics, we have engineered core-shell cobalt-gold nanoparticles with spherical (Co@Au NPs) and elliptical morphology (Co@Au NEs).
View Article and Find Full Text PDFCurrently, the cochlear implantation procedure mainly relies on using a hand lens or surgical microscope, where the success rate and surgery time strongly depend on the surgeon's experience. Therefore, a real-time image guidance tool may facilitate the implantation procedure. In this study, we performed a systematic and quantitative analysis on the optical characterization of mouse cochlear samples using two swept-source optical coherence tomography (OCT) systems operating at the 1.
View Article and Find Full Text PDFOptical coherence tomography angiography (OCTA) can provide rapid, volumetric, and noninvasive imaging of tissue microvasculature without the requirement of exogenous contrast agents. To investigate how A-scan rate and interscan time affected the contrast and dynamic range of OCTA, we developed a 1.06-µm swept-source OCT system enabling 100-kHz or 200-kHz OCT using two light sources.
View Article and Find Full Text PDFIn this study, a Q-switch pumped supercontinuum laser (QS-SCL) is used as a light source for imaging via ultrahigh-resolution optical coherence tomography and angiography (UHR-OCT/OCTA). For this purpose, an OCT system based on a spectral-domain detection scheme is constructed, and a spectrometer with a spectral range of 635 - 875 nm is designed. The effective full-width at half maximum of spectrum covers 150 nm, and the corresponding axial and transverse resolutions are 2 and 10 µm in air, respectively.
View Article and Find Full Text PDFEnamel is the outermost layer of the tooth that protects it from invasion. In general, an acidic environment accelerates tooth demineralization, leading to the formation of cavities. Scanning electron microscopy (SEM) is conventionally used as an in vitro tool for the observation of tooth morphology changes with acid attacks.
View Article and Find Full Text PDFInvestigation of tumor development is essential in cancer research. In the laboratory, living cell culture is a standard bio-technology for studying cellular response under tested conditions to predict in vivo cellular response. In particular, the colony formation assay has become a standard experiment for characterizing the tumor development in vitro.
View Article and Find Full Text PDFBiomed Opt Express
September 2018
Ultraviolet (UV) rays have been identified as a carcinogen with long-term irradiation and are an important risk factor for skin cancer. Here, we report the use of optical coherence tomography/optical coherence tomography angiography (OCT/OCTA) to study acute UV-induced effects on skin . To understand the relationship between the acute effects and irradiated UV power density, three groups were irradiated with different power densities in our experiments.
View Article and Find Full Text PDFThe application of random lasers has been restricted due to the absence of a well-defined resonant cavity, as the lasing action mainly depends on multiple light scattering induced by intrinsic disorders of the laser medium to establish the required optical feedback that hence increases the difficulty in efficiently tuning and modulating random lasing emissions. This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions. For the first time, the developed curvature-tunable random laser is implemented for in vivo biological imaging with much lower speckle noise compared to the non-lasing situation through simple mechanical bending, which is of great potential for studying the fast-moving physiological phenomenon such as blood flow patterns in mouse ear skin.
View Article and Find Full Text PDFWe report a dual-focus fiber-optic probe designed to extend depth of focus (DOF) in high-resolution endoscopic optical coherence tomography. We exploited the broad spectral bandwidth of a supercontinuum source and, in the fiber probe, the foci of the 750-1000 nm and 1100-1450 nm inputs were axially chromatically shifted. The interference signals from the two spectral bands were measured with a Si camera-based spectrometer and an InGaAs camera-based spectrometer, respectively.
View Article and Find Full Text PDFIn this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate.
View Article and Find Full Text PDFFocused ultrasound (FUS) in combination with microbubbles temporally and locally increases the permeability of the blood-brain barrier (BBB) for facilitating drug delivery. However, the temporary effects of FUS on the brain microstructure and microcirculation need to be addressed. We used label-free optical coherence tomography (OCT) and OCT angiography (OCTA) to investigate the morphological and microcirculation changes in mouse brains due to FUS exposure at different power levels.
View Article and Find Full Text PDFIn this study, we demonstrated the feasibility of using a handheld optical coherence tomography (OCT) for visualizations of the microstructural and microvascular features of various oral mucosal types. To scan arbitrary locations of the oral mucosa, a scanning probe was developed, composed of a probe body fabricated by a 3D printer, miniaturized two-axis galvanometer, relay lenses, and reflective prism. With a 3D printing technique, the probe weight and the system volume were greatly reduced, enabling the effective improvement of imaging artifacts from unconscious motion and system complexity.
View Article and Find Full Text PDFA new approach to non-invasive image-guided laser micro-treatment is demonstrated by a dual-wavelength fiber laser source and an integrated fiber-based multi-modal system. The fiber-based source, operated in 1.55 and 1.
View Article and Find Full Text PDFOptical coherence tomography (OCT) angiography requires high sensitivity and image penetration for detailed microvascular monitoring. Unfortunately, no effective contrast-medium-enhanced scheme is currently available for imaging improvement. We here propose the simultaneous use of gas-filled microbubbles (MBs) and acoustic actuation to enhance the imaging contrast of OCT angiography.
View Article and Find Full Text PDFThe nail provides a functional protection to the fingertips and surrounding tissue from external injuries. The nail plate consists of three layers including dorsal, intermediate, and ventral layers. The dorsal layer consists of compact, hard keratins, limiting topical drug delivery through the nail.
View Article and Find Full Text PDFDissolving microneedles (MNs) display high efficiency in delivering poorly permeable drugs and vaccines. Here, two-layer dissolving polymeric MN patches composed of gelatin and sodium carboxymethyl cellulose (CMC) were fabricated with a two-step casting and centrifuging process to localize the insulin in the needle and achieve efficient transdermal delivery of insulin. In vitro skin insertion capability was determined by staining with tissue-marking dye after insertion, and the real-time penetration depth was monitored using optical coherence tomography.
View Article and Find Full Text PDFTransdermal drug-delivery systems (TDDS) have been a growing field in drug delivery because of their advantages over parenteral and oral administration. Recent studies illustrate that microneedles (MNs) can effectively penetrate through the stratum corneum barrier to facilitate drug delivery. However, the temporal effects on skin and drug diffusion are difficult to investigate in vivo.
View Article and Find Full Text PDFEnhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents.
View Article and Find Full Text PDFZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.
View Article and Find Full Text PDFBlood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation.
View Article and Find Full Text PDF