IEEE Trans Biomed Circuits Syst
December 2018
A real-time cost and power-efficient (CPE) set partitioning in hierarchical trees (SPIHT) decoder design with low hardware complexity and low-power dissipation is introduced in one-dimension (1-D) wavelet-based quality-assured electrocardiograph (ECG) compression systems for mobile health (mHealth) applications. However, current SPIHT coding architectures are designed for image/video processing. These architectures require a large amount of memory as well as complicated sorting algorithms, which both require time-consuming tasks and are unsuitable for mobile ECG applications.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2018
In this paper, a speed and power-efficient set partitioning in hierarchical trees (SPIHT) design is introduced for one-dimensional (1-D) wavelet-based electrocardiography (ECG) compression systems with quality guarantee. To achieve real-time and low-power design objectives toward wearable quality-on-demand (QoD) ECG applications, we first propose a coding-time- and computation-efficient SPIHT algorithm using various types of coding status register files to overcome the disadvantages of low coding speeds and complicated hardware architectures characterizing prior SPIHT algorithms resulting from the necessity of dynamic computation and arrangement in the sorting and refinement processing phase. Second, a highly pipelined and power-efficient very large scale integration (VLSI) architecture is developed to implement a high-performance and low-power SPIHT design based on the proposed algorithm.
View Article and Find Full Text PDF