Objective: Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease involving oxidative stress as well as a wide variety of cells activated from smoking cigarettes. There have been disappointingly few therapeutic advances in drug therapy for COPD. Plant polyphenols have been the topic of much research regarding their antioxidant activities and antiinflammatory and immunomodulatory effects.
View Article and Find Full Text PDFCigarette smoke (CS), the major cause of chronic obstructive pulmonary disease, contains a variety of oxidative components that were implicated in the regulation of Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) activity. However, the contribution of Shp2 enzyme to chronic obstructive pulmonary disease pathogenesis remains unclear. We investigated the role of Shp2 enzyme in blockading CS-induced pulmonary inflammation.
View Article and Find Full Text PDFClinically, sublingual immunotherapy (SLIT) using allergen extracts effectively alleviates the symptoms of allergic rhinitis and asthma. We hypothesized that oral administration of a high-dose of allergen extracts imitates SLIT, which may prevent IgE-related responses in allergic diseases. In the present study, we investigated the effects of oral administration of allergen extracts from mugwort pollen (MP) on allergen-induced inflammation and airway hyperresponsiveness (AHR) in an allergic mouse model.
View Article and Find Full Text PDFCigarette smoking is associated with an increased incidence of chronic obstructive pulmonary disease (COPD). In this study, we hypothesized that liquiritin apioside (LA), a main flavonoid component from Glycyrrhiza uralensis, had antioxidant properties by inducing glutathione (GSH) biosynthesis via the inhibition of cytokines and protected lung epithelial cells against cigarette smoke-mediated oxidative stress. A549 cells were treated with cigarette smoke extract (CSE) and/or LA.
View Article and Find Full Text PDFM(3) muscarinic receptors are localized on inflammatory cells, airway smooth muscle, and submucosal glands, known to mediate bronchoconstriction, mucus secretion, and airway remodeling. It is hypothesized bencycloquidium bromide (BCQB), a novel M(3) receptor antagonist, might have potential effects on airway hyperresponsiveness, inflammation and airway remodeling in a murine model of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation.
View Article and Find Full Text PDFIn this study we have investigated the antagonist affinity, efficacy and duration of action of bencycloquidium bromide (BCQB), a selective muscarinic M(3) receptor antagonist, as a possible clinical bronchodilator for the treatment of chronic obstructive pulmonary disease (COPD) and asthma. In competition studies, BCQB showed high affinity toward the M(3) receptor in Chinese hamster ovary (CHO) cells (M(3) pKi=8.21, M(2) pKi=7.
View Article and Find Full Text PDF