Publications by authors named "Meng-Huee Lee"

Background: Peritumoral fibroblasts are key components of the tumor microenvironment. Through remodeling of the extracellular matrix (ECM) and secretion of pro-tumorigenic cytokines, peritumoral fibroblasts foster an immunosuppressive milieu conducive to tumor cell proliferation. In this study, we investigated if peritumoral fibroblasts could be therapeutically engineered to elicit an anti-cancer response by abolishing the proteolytic activities of membrane-bound metalloproteinases involved in ECM modulation.

View Article and Find Full Text PDF

Stromal fibroblasts surrounding cancer cells are a major and important constituent of the tumor microenvironment not least because they contain cancer-associated fibroblasts, a unique fibroblastic cell type that promotes tumorigenicity through extracellular matrix remodeling and secretion of soluble factors that stimulate cell differentiation and invasion. Despite much progress made in understanding the molecular mechanisms that underpin fibroblast-tumor cross-talk, relatively little is known about the way the two cell types interact from a physical contact perspective. In this study, we report a novel three-dimensional dumbbell model that would allow the physical interaction between the fibroblasts and cancer cells to be visualized and monitored by microscopy.

View Article and Find Full Text PDF

embrane ype -atrix etalloroteinase (MT1-MMP) and umor necrosis factor (TNF-α)-onverting nzyme (TACE) are prominent membrane-anchored metalloproteinases that regulate the turnover of extracellular matrix (ECM) components and bioactive molecules required for cancer proliferation. In this study, we describe a novel approach that would allow tissue inhibitor of metalloproteinase 1 (TIMP-1), the endogenous inhibitor of the matrix metalloproteinases (MMPs), to be translocated to the cell membrane for simultaneous MT1-MMP/TACE inhibition. We achieve this by fusing T1, a designer TIMP-1 with superb affinities for MT1-MMP and TACE, to the glycosyl-phosphatidyl inositol anchor of prions to create a membrane-tethered, broad-spectrum inhibitor, named T1, that colocalizes with MT1-MMP and TACE on the cell surface.

View Article and Find Full Text PDF

Renal carcinoma cells express Membrane Type 1-Matrix Metalloproteinase (MT1-MMP, MMP-14) to degrade extracellular matrix components and a range of bioactive molecules to allow metastasis and cell proliferation. The activity of MT1-MMP is modulated by the endogenous inhibitors, Tissue Inhibitor of Metalloproteinases (TIMPs). In this study, we describe a novel strategy that would enable a "designer" TIMP-1 tailored specifically for MT1-MMP inhibition (V4A/P6V/T98L; 1.

View Article and Find Full Text PDF

Metastatic cancer cells express Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) to degrade the extracellular matrix in order to facilitate migration and proliferation. Tissue Inhibitor of Metalloproteinase (TIMP)-2 is the endogenous inhibitor of the MMP. Here, we describe a novel and highly effective fusion strategy to enhance the delivery of TIMP-2 to MT1-MMP.

View Article and Find Full Text PDF

A disintegrin and metalloproteinase with thombospondin motifs (ADAMTS) 13 and 15 are secreted zinc proteinases involved in the turnover of von Willebrand factor and cancer suppression. In the present study, ADAMTS13 and 15 were subjected to inhibition studies with the full-length and N-terminal domain forms of tissue inhibitor of metalloproteinases (TIMPs)-1 to -4. TIMPs have no ability to inhibit the ADAMTS proteinases in the full-length or N-terminal domain form.

View Article and Find Full Text PDF

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity.

View Article and Find Full Text PDF

The semi-synthetic sulfated polysaccharide PPS (pentosan polysulfate) increases affinity between the aggrecan-degrading ADAMTSs (adamalysins with thrombospondin motifs) and their endogenous inhibitor, TIMP (tissue inhibitor of metalloproteinases)-3. In the present study we demonstrate that PPS mediates the formation of a high-affinity trimolecular complex with ADAMTS-5 and TIMP-3. A TIMP-3 mutant that lacks extracellular-matrix-binding ability was insensitive to this affinity increase, and truncated forms of ADAMTS-5 that lack the Sp (spacer) domain had reduced PPS-binding ability and sensitivity to the affinity increase.

View Article and Find Full Text PDF

Protein flexibility is thought to play key roles in numerous biological processes, including antibody affinity maturation, signal transduction, and enzyme catalysis, yet only limited information is available regarding the molecular details linking protein dynamics with function. A single point mutation at the distal site of the endogenous tissue inhibitor of metalloproteinase 1 (TIMP-1) enables this clinical target protein to tightly bind and inhibit membrane type 1 matrix metalloproteinase (MT1-MMP) by increasing only the association constant. The high-resolution X-ray structure of this complex determined at 2 A could not explain the mechanism of enhanced binding and pointed to a role for protein conformational dynamics.

View Article and Find Full Text PDF

The disintegrin and metalloprotease ADAM12 has important functions in normal physiology as well as in diseases, such as cancer. Little is known about how ADAM12 confers its pro-tumorigenic effect; however, its proteolytic capacity is probably a key component. Thus selective inhibition of ADAM12 activity may be of great value therapeutically and as an investigative tool to elucidate its mechanisms of action.

View Article and Find Full Text PDF

The surface-anchored membrane type 1 matrix metalloproteinase (MT1-MMP) degrades a wide range of extracellular matrix components that includes collagens, laminins, fibronectin and the structural proteoglycan aggrecan. The enzyme modulates cell motility and plays an important role in tumour invasion and proliferation. We have previously designed a variant of tissue inhibitor of metalloproteinase (TIMP)-1 bearing a triple mutation (V4A+P6V+T98L, or N-TIMP-1(mt1)) that forms tight binary complex with the soluble catalytic domain of MT1-MMP [M.

View Article and Find Full Text PDF

ADAM (a disintegrin and metalloproteinase) 10 is a key member of the ADAM family of disintegrin and metalloproteinases which process membrane-associated proteins to soluble forms in a process known as 'shedding'. Among the major targets of ADAM10 are Notch, EphrinA2 and CD44. In many cell-based studies of shedding, the activity of ADAM10 appears to overlap with that of ADAM17, which has a similar active-site topology relative to the other proteolytically active ADAMs.

View Article and Find Full Text PDF

Tissue inhibitor of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent endopeptidases of the matrix metalloproteinase families. There are four mammalian TIMPs (TIMP-1 to -4) but only TIMP-3 is sequestered to the extracellular matrix (ECM). The molecular basis for the TIMP-3:ECM association has never been fully investigated until now.

View Article and Find Full Text PDF

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17).

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE, ADAM-17) is a zinc-dependent ADAM (a disintegrin and metalloproteinase) metalloproteinase (MP) of the metzincin superfamily. The enzyme regulates the shedding of a variety of cell surface-anchored molecules such as cytokines, growth factors, and receptors. The activities of the MPs are modulated by the endogenous inhibitors, the tissue inhibitor of metalloproteinases (TIMPs).

View Article and Find Full Text PDF

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous modulators of the zinc-dependent mammalian matrix metalloproteinases (MMPs) and their close associates, proteinases of the ADAM (a disintegrin and metalloproteinase) and ADAM with thrombospondin repeats families. There are four variants of TIMPs, and each has its defined set of metalloproteinase (MP) targets. TIMP-1, in particular, is inactive against several of the membrane-type MMPs (MT-MMPs), MMP-19, and the ADAM proteinase TACE (tumor necrosis factor-alpha-converting enzyme, ADAM-17).

View Article and Find Full Text PDF

Pericellular proteolysis represents one of the key modes by which the cell can modulate its environment, involving not only turnover of the extracellular matrix but also the regulation of cell membrane proteins, such as growth factors and their receptors. The metzincins are active players in such proteolytic events, and their mode of regulation is therefore of particular interest and importance. The TIMPs (tissue inhibitors of metalloproteinases) are established endogenous inhibitors of the matrix metalloproteinases (MMPs), and some have intriguing abilities to associate with the pericellular environment.

View Article and Find Full Text PDF

Membrane type 1-matrix metalloproteinase (MT1-MMP) is a zinc-dependent, membrane-associated endoproteinase of the metzincin family. The enzyme regulates extracellular matrix remodeling and is capable of cleaving a wide variety of transmembrane proteins. The enzymatic activity of MT1-MMP is regulated by endogenous inhibitors, the tissue inhibitor of metalloproteinases (TIMP).

View Article and Find Full Text PDF

Tumour necrosis factor-alpha (TNF-alpha) converting enzyme (TACE) is a membrane-anchored, multiple-domain zinc metalloproteinase responsible for the release of the potent pro-inflammatory cytokine, TNF-alpha. The extracellular part of the active enzyme is composed of a catalytic domain and several cysteine-rich domains. Previously, we reported that these cysteine-rich domains significantly weakened the inhibitory potency of the N-terminal-domain form of tissue inhibitor of metalloproteinases-3 (N-TIMP-3).

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE/ADAM-17) is responsible for the release of TNF-alpha, a potent proinflammatory cytokine associated with many chronic debilitating diseases such as rheumatoid arthritis. Among the four variants of mammalian tissue inhibitor of metalloproteinases (TIMP-1 to -4), TACE is specifically inhibited by TIMP-3. We set out to delineate the basis for this specificity by examining the solvent accessibility of every epitope on the surface of a model of the truncated N-terminal domain form of TIMP-3 (N-TIMP-3) in a hypothetical complex with the crystal structure of TACE.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3.

View Article and Find Full Text PDF

We previously reported that full-length tissue inhibitor of metalloproteinase-3 (TIMP-3) and its N-terminal domain form (N-TIMP-3) displayed equal binding affinity for tissue necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE). Based on the computer graphic of TACE docked with a TIMP-3 model, we created a number of N-TIMP-3 mutants that showed significant improvement in TACE inhibition. Our strategy was to select those N-TIMP-3 residues that were believed to be in actual contact with the active-site pockets of TACE and mutate them to amino acids of a better-fitting nature.

View Article and Find Full Text PDF