Publications by authors named "Meng-Ge Wang"

With the release of large-scale genomic resources from ancient and modern populations, advancements in computational biology tools, and the enhancement of data mining capabilities, the field of genomics is undergoing a revolutionary transformation. These advancements and changes have not only significantly deepened our understanding of the complex evolutionary processes of human origins, migration, and admixture but have also unveiled the impact of these processes on human health and disease. They have accelerated research into the genetic basis of human health and disease and provided new avenues for uncovering the evolutionary trajectories recorded in the human genome related to population history and disease genetics.

View Article and Find Full Text PDF

Background: To evaluate the possibilty of preventing recurrent vitreous hemorrhage (RVH) after vitrectomy in proliferative diabetic retinopathy (PDR) patients with unabsorbed vitreous hemorrhage (VH) by intravitreal injection of viscoelastic agent (VA) at the end of the surgery and compared its effect with triamcinolone acetonide (TA).

Methods: This was a pilot prospective, observational study. PDR patients with VH who underwent vitrectomy were assigned to 3 groups according to the tamponade applicated at the end of the surgery, including VA group (intravitreally injected 1 ml VA if the retina was prone to bleed during the operation), TA group (intravitreally injected 2 mg TA when there was much exudates), or balanced salt solution (BSS) group (no tamponade).

View Article and Find Full Text PDF

A chemical investigation of the twigs and leaves of Erythrina subumbrans led to the isolation and structural elucidation of three coumaronochromones, erythrinasubumbrin A and (±)-erythrinasubumbrin B, five prenylated flavanones, (±)-erythrinasubumbrin C and erythrinasubumbrins D-F, and two prenylated isoflavones, (±)-5,4'-dihydroxy-[4,5-cis-4-ethoxy-5-hydroxy-6,6-dimethyl-4,5-dihydropyrano (2,3:7,6)]-isoflavone, in addition to 18 known analogues. Two extra cinnamylphenols previously only known as commercial synthetic products were also isolated and elucidated from a natural source for the first time, and assigned the trivial names erythrinasubumbrins G and H. Their structures were characterized by detailed analysis of spectroscopic data, including HRESIMS and 2D NMR.

View Article and Find Full Text PDF

Objective: Perivascular spaces (PVS), components of the glymphatic system in the brain, have been known to be important conduits for clearing metabolic waste, and this process mainly increases during sleep. Sleep disruption might result in PVS dysfunction and cognitive impairment. In this study, we aim to explore whether MRI-visible enlarged perivascular spaces (EPVS) could be imaging markers to predict cognitive impairment in chronic insomnia patients.

View Article and Find Full Text PDF

Objective: To explore the role of bromodomain and extra terminal (BET) bromodomain in hematopoietic differentiation from human enbryonic stem cells (hESC).

Methods: The effect of BET hematopoietic inhibitor I-BET151 on hematopoietic differentiation from hESC was detected by using a monolayer hematopoietic defferentiation model, immunofluorescence, flow cytometry and real-time PCR; moreover the role of I-BET151 in process of hematopoietic differentiation was explored by adding I-BET151 in different differentiation stages.

Results: The analysis results of immunofluorescence, flow cytometry and real-time PCR showed that I-BET 151 significantly inhibited the generation of CD43 positive hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

Objective: To explore the role of dimethyl sulfoxide (DMSO) in the hematopoietic differentiation of human embryonic stem cells (hESCs).

Methods: The role of DMSO in hematopoietic differentiation of hESC was investigated by using a established stepwise hematopoietic differentiation system from hESC, immunofluorescouse assay and flow cytometry. Furthermore, the window phase of DMSO action was explored by adding it to the different stage of hematopoietic differentiation.

View Article and Find Full Text PDF